Ann. of Appl. Math. **35**:2(2019), 152-158

ASYMPTOTIC EIGENVALUE ESTIMATION FOR A CLASS OF STRUCTURED MATRICES* †

Juan Liang

(School of Math. and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, PR China)

Jiangzhou Lai[‡]

(School of Math. and Computer Science, Fuzhou University, Fuzhou 350108, Fujian, PR China)

Qiang Niu

(Dept. of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, PR China)

Abstract

In this paper we consider eigenvalue asymptotic estimations for a class of structured matrices arising from statistical applications. The asymptotic upper bounds of the largest eigenvalue (λ_{\max}) and the sum of squares of eigenvalues $\left(\sum_{i=1}^{n} \lambda_i^2\right)$ are derived. Both these bounds are useful in examining the stability of certain Markov process. Numerical examples are provided to illustrate tightness of the bounds.

Keywords Toeplitz matrix; eigenvalue; rank-one modification; trace **2000 Mathematics Subject Classification** 65F10; 65N20

1 Introduction

The necessity of analyzing asymptotic behavior of eigenvalue distribution of structure matrices, e.g., Toeplitz matrices, block Toeplitz matrices and Toeplitz like matrices, arise in many fields of applications [1-3]. The eigenvalue distribution of sequences of symmetric Toeplitz matrices was revealed [1]. As an application, these results have been applied to the study of covariance matrices of a second order

^{*}Juan Liang's work was supported by Young and middle-aged teachers education research project of Fujian Provincial Education Department No.JT180300; Jiangzhou Lai's work was supported by Core Courses for undergraduate majors of Fuzhou university No.0360-52000732; Qiang Niu's work was supported by XJTLU research enhancement fund No.REF-18-01-04 and the XJTLU Key Programme Special Fund (KSF).

[†]Manuscript received December 7, 2018

[‡]Corresponding author. E-mail: jzlai868@fzu.edu.cn

stationary process. In more recent research, extensions have been made to block Toeplitz matrices with non-Toeplitz blocks [4,5]. In this paper, we consider a class of structure matrices arising in the study of order statistics under exponentiality. The matrix $A \in \mathbb{R}^{n \times n}$ is structured with its entries be defined by

$$a_{ij} = e^{-\frac{|i-j|}{n}P} - e^{-\frac{i+j}{n}P}$$
(1)

153

where P is a parameter with an order normally less than $n^{\frac{1}{2}}$, $n \to +\infty$.

Let λ_i , $i = 1, 2, \dots, n$, be eigenvalues of A, and λ_{\max} be the largest eigenvalue. Then λ_{\max} is the optimal constant of certain logarithmic Sobolev inequality, and $\sum_{i=1}^{n} \lambda_i^2$ is a useful quantity in related applications. Therefore, upper bounds of λ_{\max} and $\sum_{i=1}^{n} \lambda_i^2$ (as $n \to \infty$) are important in determining asymptotic stability of the process. In this note, we intend to give proper upper bounds for λ_{\max} and $\sum_{i=1}^{n} \lambda_i^2$

respectively, as $n \to \infty$.

By the definition of matrix A, it is easy to see that A is a positive matrix [6]. For simplicity, we denote positive matrix A by A > 0 and the nonnegative matrix A by $A \ge 0$. The following results are useful in deriving the main results of the paper. For completeness, we list them as follows.

Lemma 1^[7] Let $B \ge 0$ be an irreducible matrix. Then:

- (1) The matrix B has a positive real eigenvalue equal to its spectral radius;
- (2) the spectral radius $\rho(B)$ is a simple eigenvalue of B;
- (3) there is an eigenvector x > 0 that is corresponding to eigenvalue $\rho(B)$;

(4) $\rho(B)$ increases when any entry of B increases.

Lemma 2^[8] The positive matrix is irreducible.

This paper is organized as follows. In Section 2, by regarding matrix A as a rank-one modification of Toeplitz matrix, we derive the asymptotic upper bound for the largest eigenvalue. In Section 3, by computing the trace of A^2 , we obtain the asymptotic upper bound for the sum of squares of eigenvalues $\left(\sum_{i=1}^{n} \lambda_i^2\right)$. Finally, we conclude the paper in Section 4.

2 Asymptotic Upper Bound of the Largest Eigenvalue Define $\tilde{A} = (\tilde{a}_{1})$ by

Define $\widetilde{A} = (\widetilde{a}_{i,j})_{n \times n}$ by

$$\widetilde{a}_{ij} = e^{-\frac{|i-j|}{n}P}.$$
(2)

Then

$$A = \widetilde{A} - uu^{\mathrm{T}},\tag{3}$$

where $u = [e^{\frac{-1}{n}P}, \cdots, e^{\frac{-n}{n}P}]^{T}$, and the superscript ^T denotes the transpose of a vector or matrix. Since matrix \widetilde{A} has Toeplitz structure, it follows that the original