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Abstract

In this paper, we construct stationary classical solutions of the shallow
water equation with vanishing Froude number Fr in the so-called lake model.
To this end we need to study solutions to the following semilinear elliptic
problem −ε2div

(∇u
b

)
= b
(
u− q log

1

ε

)p
+
, in Ω,

u = 0, on ∂Ω,

for small ε > 0, where p > 1, div
(∇q

b

)
= 0 and Ω ⊂ R2 is a smooth bounded

domain.
We show that if q2

b has m strictly local minimum (maximum) points z̄i, i =
1, · · · ,m, then there is a stationary classical solution approximating stationary

m points vortex solution of shallow water equations with vorticity
m∑
i=1

2πq(z̄i)
b(z̄i)

.

Moreover, strictly local minimum points of q2

b on the boundary can also give
vortex solutions for the shallow water equation.
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1 Introduction and Main Results
In this paper, we consider fluid contained in a basin by a uniform gravitational ac-

celeration g and fixed vertical lateral boundaries (that is, no sloping beaches).
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Suppose that (x, y) is horizontal spatial coordinate which is confined to a fixed

bounded domain Ω with boundary ∂Ω. The vertical coordinate is chosen so that the

mean height of the fluid’s free upper surface is at z = 0. Let z = −b(x, y) give the

fixed bottom topography, so b is a strict positive function over Ω. Let z = h(x, y) be

the free upper surface. We assume that both b and ∂Ω vary over distances L which

are large compared to typical depth B, that is, the ratio δ = B
L is small.

Let u and w denote the horizontal and vertical components respectively of the

fluid velocity. We will consider only those motion for which u,w and h each vary

in (x, y) over distances L, in other words, we will make the long-wave approxima-

tion. The “Froude number” is denoted as Fr = U√
gB

, where U is the characteristic

magnitude of u. We will consider the case of small “Froude number” Fr and h is

small compared to B. In such cases, from [1,3,4, 19], the leading-order evolution of

u(x, y, t) and h(x, y, t) will be governed by equations that have the non-dimensional

form {
∂tv+ (v · ∇)v = −∇h,
div(bv) = 0,

(1.1)

where ∇ is the horizontal gradient. Since these equations are applied to a domain

which is shallow compared to its width and whose free surface exhibits negligible

surface motion, they are called the “lake” equations (see [4], for instance).

The first equation in (1.1) can be rewritten in terms of the vorticity ω = ∇×v :=
∂v2
∂x − ∂v1

∂y as
∂tv+ ω × v = −∇

( |v|2
2

+ h
)
,

ω×v = (−v2ω,v1ω). This model is analogous to the two-dimensional Euler equation

for an idea incompressible fluid and has been recently studied by many authors. For

instance, see [1, 3, 4, 19] and the references therein.

Recently, De Valeriola and Van Schaftingen [9] studied the desingularization of

vortices for (1.1) with the stream function method, which consists in observing that

if ψ satisfies
−div

(∇ψ
b

)
= bf(ψ),

for f ∈ C1(R), then v = curlψ
b , and h = −F (ψ) − |v|2

2 with F (s) =
∫ s
0 f(s)ds

form a stationary solution to the shallow water equation. Moreover, the velocity

v is irrotational on the set where f(ψ) = 0. It is easy to see that if ψ0 satisfies

−div
(∇ψ0

b

)
= 0, then v0 = curlψ0

b , h0 = − |v0|2
2 is an irrotaional stationary solution

to (1.1). In [9], they studied the asymptotics of solutions to
−ε2div

(∇ψ
b

)
= bψp+, in Ω,

ψ = ψ0 ln
1

ε
, on ∂Ω,

(1.2)


