Ann. of Appl. Math. **35**:3(2019), 221-249

MULTIPLE VORTICES FOR THE SHALLOW WATER EQUATION IN TWO DIMENSIONS*[†]

Daomin Cao[‡]

(Institute of Applied Math., Chinese Academy of Science, Beijing 100190, PR China) Zhongyuan Liu

> (School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, PR China)

Dedicated to the 90th Birthday of Xiaqi Ding

Abstract

In this paper, we construct stationary classical solutions of the shallow water equation with vanishing Froude number Fr in the so-called lake model. To this end we need to study solutions to the following semilinear elliptic problem

$$\begin{cases} -\varepsilon^2 \operatorname{div}\left(\frac{\nabla u}{b}\right) = b\left(u - q\log\frac{1}{\varepsilon}\right)_+^p, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

for small $\varepsilon > 0$, where p > 1, $\operatorname{div}\left(\frac{\nabla q}{b}\right) = 0$ and $\Omega \subset \mathbb{R}^2$ is a smooth bounded domain.

We show that if $\frac{q^2}{b}$ has m strictly local minimum (maximum) points \bar{z}_i , $i = 1, \dots, m$, then there is a stationary classical solution approximating stationary m points vortex solution of shallow water equations with vorticity $\sum_{i=1}^{m} \frac{2\pi q(\bar{z}_i)}{b(\bar{z}_i)}$.

Moreover, strictly local minimum points of $\frac{q^2}{b}$ on the boundary can also give vortex solutions for the shallow water equation.

 ${\bf Keywords}\;$ shallow water equation; free boundary; stream function; vortex solution

2000 Mathematics Subject Classification 35J20; 35J40; 35J60; 35R45

1 Introduction and Main Results

In this paper, we consider fluid contained in a basin by a uniform gravitational acceleration g and fixed vertical lateral boundaries (that is, no sloping beaches).

[†]Manuscript received July 30, 2019

[‡]Corresponding author. E-mail: dmcao@amt.ac.cn

^{*}The first author was supported by NNSF of China (No.11771469) and Chinese Academy of Sciences (No.QYZDJ-SSW-SYS021); the second author was supported by NNSF of China (No.11971147).

Suppose that (x, y) is horizontal spatial coordinate which is confined to a fixed bounded domain Ω with boundary $\partial \Omega$. The vertical coordinate is chosen so that the mean height of the fluid's free upper surface is at z = 0. Let z = -b(x, y) give the fixed bottom topography, so b is a strict positive function over Ω . Let z = h(x, y) be the free upper surface. We assume that both b and $\partial \Omega$ vary over distances L which are large compared to typical depth B, that is, the ratio $\delta = \frac{B}{L}$ is small.

Let **u** and *w* denote the horizontal and vertical components respectively of the fluid velocity. We will consider only those motion for which \mathbf{u}, w and *h* each vary in (x, y) over distances *L*, in other words, we will make the long-wave approximation. The "Froude number" is denoted as $Fr = \frac{U}{\sqrt{gB}}$, where *U* is the characteristic magnitude of **u**. We will consider the case of small "Froude number" *Fr* and *h* is small compared to *B*. In such cases, from [1,3,4,19], the leading-order evolution of $\mathbf{u}(x, y, t)$ and h(x, y, t) will be governed by equations that have the non-dimensional form

$$\begin{cases} \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla h, \\ \operatorname{div}(b\mathbf{v}) = 0, \end{cases}$$
(1.1)

where ∇ is the horizontal gradient. Since these equations are applied to a domain which is shallow compared to its width and whose free surface exhibits negligible surface motion, they are called the "lake" equations (see [4], for instance).

The first equation in (1.1) can be rewritten in terms of the vorticity $\omega = \nabla \times \mathbf{v} := \frac{\partial \mathbf{v}_2}{\partial x} - \frac{\partial \mathbf{v}_1}{\partial y}$ as

$$\partial_t \mathbf{v} + \omega \times \mathbf{v} = -\nabla \Big(\frac{|\mathbf{v}|^2}{2} + h \Big),$$

 $\omega \times \mathbf{v} = (-\mathbf{v}_2\omega, \mathbf{v}_1\omega)$. This model is analogous to the two-dimensional Euler equation for an idea incompressible fluid and has been recently studied by many authors. For instance, see [1,3,4,19] and the references therein.

Recently, De Valeriola and Van Schaftingen [9] studied the desingularization of vortices for (1.1) with the stream function method, which consists in observing that if ψ satisfies $\langle \nabla x \rangle$

$$-\mathrm{div}\left(\frac{\nabla\psi}{b}\right) = bf(\psi),$$

for $f \in C^1(\mathbb{R})$, then $\mathbf{v} = \frac{\operatorname{curl}\psi}{b}$, and $h = -F(\psi) - \frac{|\mathbf{v}|^2}{2}$ with $F(s) = \int_0^s f(s) \mathrm{d}s$ form a stationary solution to the shallow water equation. Moreover, the velocity \mathbf{v} is irrotational on the set where $f(\psi) = 0$. It is easy to see that if ψ_0 satisfies $-\operatorname{div}\left(\frac{\nabla\psi_0}{b}\right) = 0$, then $\mathbf{v}_0 = \frac{\operatorname{curl}\psi_0}{b}$, $h_0 = -\frac{|\mathbf{v}_0|^2}{2}$ is an irrotational stationary solution to (1.1). In [9], they studied the asymptotics of solutions to

$$\begin{cases} -\varepsilon^2 \operatorname{div}\left(\frac{\nabla\psi}{b}\right) = b\psi_+^p, & \text{in } \Omega, \\ \psi = \psi_0 \ln \frac{1}{\varepsilon}, & \text{on } \partial\Omega, \end{cases}$$
(1.2)