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Abstract

The usual heat flow moves along the direction from high temperature place
to the low one, as often observed in the daily life. However, when the gas is
very rarefied, the gas may move along a different way, that is, the so-called
thermal creep flow moves along the direction from the low temperature place
to the high one. In this note, we will survey our recent mathematical works
on this topic, mainly based on [27] and [25].

Keywords thermal creep flow; rarefied gas; Boltzmann equation; low
Mach limit; Compressible Navier-Stokes equations

2000 Mathematics Subject Classification 76P05

1 Introduction

The usual heat flow moves along the direction from high temperature place to

the low one, as often observed in the daily life. However, when the gas is very

rarefied, an interesting phenomenon may happen. A so-called thermal creep flow

moves along a different direction, that is, from the low temperature area to the high

one, see the pictures below,
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where θ denotes the temperature and u denotes the velocity of the flow. The thermal

creep flow in a rarefied gas was known since the time of Maxwell. Since the funda-
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mental equation in statistical physics for rarefied gas is the Boltzmann equation,

it is naturally conjectured that the Boltzmann equation provides more information

in the microscopic level and can model the thermal creep flow. Although there

have been a large of numerical computations on the basis of kinetic equation since

1960s, see [46–48] and the references therein, rigorous mathematical analysis is few.

The first mathematial analysis was given in [10], later by [27]. Recently the same

phenomenon was also observed in the low Mach limit of compressible Navier-Stokes

equations with non-trivial profile, see [25]. In the following two sections, we will

survey the works on the thermal creep flow in both the Boltzmann equation [27]

and the low Mach limit of the compressible Navier-Stokes equations [25].

2 Boltzmann Equation

The non-dimensional Boltzmann equation takes the form

Sh∂sf + ξ · ∇zf =
1

ε
Q(f, f), (s, z, ξ) ∈ R+ × R3 × R3,

where f(s, z, ξ) ≥ 0 is the distribution function of particles, Q(f, f) is the collision

operator with a kernel determined by the particle interaction. There are two param-

eters Sh and ε called Strouhal and Knudsen numbers respectively. Their product

Sh · ε is 2
√
π times the ratio of the mean free time to the reference time.

There has been tremendous progress on the mathematical theories for the Boltz-

mann equation, see [4, 5, 7, 12, 14, 15, 17, 26, 28, 29, 36, 37, 51–53] and the references

therein. Among them, the classical works of Hilbert, Chapman-Enskog revealed the

close relation of the Boltzmann equation to the classical systems of fluid dynamics

through asymptotic expansions when Sh = 1 and ε is small.

On the other hand, there are some phenomena described by the Boltzmann equa-

tion, for which the time evolution of the macroscopic components are not governed

by the classical fluid dynamic systems. This happens, for example, when the pa-

rameters Sh and ε as well as the macroscopic velocity are small while the density

and temperature are of the order 1, such as the thermal creep flow phenomenon.

There have been a lot of studies on this kind of phenomena which is called the

“ghost effect” in the Boltzmann equation and most of the results are mainly built

on the asymptotic expansions and numerical computations, see [5,46] and the refer-

ences therein. A rigorous mathematical analysis for the ghost effect was first given

in [10] where the thermal creep flow was studied for the stationary linearized Boltz-

mann equation. Recently we justified the thermal creep flow phenomenon for the

Boltzmann equation [27], whose main results were outlined as follows.

We assume both the Strouhal number and the macroscopic velocity (that is,

flow velocity) is of the order of ε, and rewrite the Boltzmann equation under the


