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Abstract

This paper is devoted to investigate the existence and uniqueness of the
solution of Landau-Lifshitz-Bloch-Maxwell equation. The Landau-Lifshitz-
Bloch-Maxwell equation, which fits well for a wide range of temperature, is
used to study the dynamics of magnetization vector in a ferromagnetic body.
If the initial data is in (H1, L2, L2), the existence of the global weak solution
is established. If the initial data is in (Hm+1,Hm,Hm) (m ≥ 1), the existence
and uniqueness of the global smooth solution are established.
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1 Introduction

In this paper, we consider the periodic initial value problem of the following

equations

∂Z

∂t
= ∆Z + Z × (∆Z +H)− k(1 + µ|Z|2)Z, (1.1)

∂E

∂t
+ σE = ∇×H, (1.2)
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∂H

∂t
+ β

∂Z

∂t
= −∇× E, (1.3)

∇ · (H + βZ) = 0, ∇ · E = 0, (1.4)

Z(x+2Dei, t)=Z(x, t), H(x+2Dei, t)=H(x, t), E(x+2Dei, t)=E(x, t), (1.5)

with the initial conditions

Z(x, 0) = Z0(x), H(x, 0) = H0(x), E(x, 0) = E0(x), x ∈ Rd, (1.6)

where σ, k, µ, β are positive constants, Z ∈ R3 is the spin polarization, H(x, t) =

(H1,H2,H3) is the magnetic field, E(x, t) = (E1(x, t), E2(x, t), E3(x, t)) is the elec-

tric field and He = ∆Z + H is the effective magnetic field. x ∈ Ω ⊂ Rd, d = 2, 3,

Ω =
d∏

j=1
(−D,D), t > 0.

Here the operator ∇ is defined as follows:

∇ = ∇x =

{
(∂x1 , ∂x2 , 0), d = 2, x = (x1, x2) ∈ R2,

(∂x1 , ∂x2 , ∂x3), d = 3, x = (x1, x2, x3) ∈ R3.

System (1.1)-(1.4) was studied in [4] under the additional assumption that tem-

perature is equal to constant. In [3, 4], Berti et. al. proposed a model for the

study of the dynamics of magnetization vector in a ferromagnetic body. This model

fits well for a wide range of temperature, and then can be used to establish a link

between micromagnetics and the phase transition occurring from paramagnetic to

ferromagnetic regimes.

System (1.1)-(1.4) generalizes some classical models for magnetically saturated

bodies such as the well known Landau-Lifshitz equation. Landau-Lifshitz equation

well describes the magnetization dynamics of ferromagnet at low temperature [22].

The Landau- Lifshitz-Gilbert equation is described as follows

Mt =M ×∆M − λM × (M ×∆M), M ∈ S2, (1.7)

where M(x, t) = (M1(x, t),M2(x, t),M3(x, t)) is a magnetization vector, λ > 0 is a

Gilbert constant, “×” denotes the vector outer product. Equation (1.7) has been

investigated widely. Many important results have been obtained, see [6, 17, 20, 21]

and therein references.

Equation (1.7) with λ = 0 is so-called Schrödinger map [5]. This Schrödinger

map has been widely studied in [1, 2, 5, 7, 8, 19,21,24–26] and therein references.

The model of [4] is very close to the Landau-Lifshitz-Bloch (LLB) equation. In

order to describe the dynamics of magnetization vector Z in a ferromagnetic body

for a wide range of temperature, Garanin et. al. [10–12] derived the Landau-Lifshitz-

Bloch (LLB) equation from statistical mechanics with the mean field approximation.


