Ann. of Appl. Math. **36**:1(2020), 1-30

WEAK AND SMOOTH GLOBAL SOLUTION FOR LANDAU-LIFSHITZ-BLOCH-MAXWELL EQUATION*[†]

Boling Guo, Yongqian Han, Daiwen Huang

(Institute of Applied Physics and Computational Math., P.O. Box 8009, Beijing 100088, PR China)

Fangfang Li[‡]

(Institute of Applied Math., Academy of Math. and Systems Science, China Academy of Sciences, Beijing, 100190, PR China)

Abstract

This paper is devoted to investigate the existence and uniqueness of the solution of Landau-Lifshitz-Bloch-Maxwell equation. The Landau-Lifshitz-Bloch-Maxwell equation, which fits well for a wide range of temperature, is used to study the dynamics of magnetization vector in a ferromagnetic body. If the initial data is in (H^1, L^2, L^2) , the existence of the global weak solution is established. If the initial data is in (H^{m+1}, H^m, H^m) $(m \ge 1)$, the existence and uniqueness of the global smooth solution are established.

Keywords Landau-Lifshitz-Bloch-Maxwell equation; global solution; paramagnetic-ferromagnetic transition; temperature-dependent magnetic theory; Landau-Lifshitz theory

2010 Mathematics Subject Classification 82D40; 35N30; 35Q60; 35Q61

1 Introduction

In this paper, we consider the periodic initial value problem of the following equations

$$\frac{\partial Z}{\partial t} = \Delta Z + Z \times (\Delta Z + H) - k(1 + \mu |Z|^2)Z, \qquad (1.1)$$

$$\frac{\partial E}{\partial t} + \sigma E = \nabla \times H, \tag{1.2}$$

^{*}This work was supported in part by the National Natural Science Foundation of China (No.11731014, No.11571254, No.11471323, No.11471057, No.11771183, No.11631008).

[†]Manuscript received November 21, 2019

[‡]Corresponding author. E-mail: E-mail: lifang_868@126.com

Vol.36

$$\frac{\partial H}{\partial t} + \beta \frac{\partial Z}{\partial t} = -\nabla \times E, \tag{1.3}$$

$$\nabla \cdot (H + \beta Z) = 0, \quad \nabla \cdot E = 0, \tag{1.4}$$

$$Z(x+2De_i,t) = Z(x,t), \quad H(x+2De_i,t) = H(x,t), \quad E(x+2De_i,t) = E(x,t), \quad (1.5)$$

with the initial conditions

$$Z(x,0) = Z_0(x), \quad H(x,0) = H_0(x), \quad E(x,0) = E_0(x), \quad x \in \mathbb{R}^d,$$
(1.6)

where σ, k, μ, β are positive constants, $Z \in \mathbb{R}^3$ is the spin polarization, $H(x,t) = (H_1, H_2, H_3)$ is the magnetic field, $E(x,t) = (E_1(x,t), E_2(x,t), E_3(x,t))$ is the electric field and $H^e = \Delta Z + H$ is the effective magnetic field. $x \in \Omega \subset \mathbb{R}^d, d = 2, 3,$ $\Omega = \prod_{j=1}^d (-D, D), t > 0.$

Here the operator ∇ is defined as follows:

$$\nabla = \nabla_x = \begin{cases} (\partial_{x_1}, \partial_{x_2}, 0), & d = 2, \quad x = (x_1, x_2) \in \mathbb{R}^2, \\ (\partial_{x_1}, \partial_{x_2}, \partial_{x_3}), & d = 3, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3. \end{cases}$$

System (1.1)-(1.4) was studied in [4] under the additional assumption that temperature is equal to constant. In [3, 4], Berti et. al. proposed a model for the study of the dynamics of magnetization vector in a ferromagnetic body. This model fits well for a wide range of temperature, and then can be used to establish a link between micromagnetics and the phase transition occurring from paramagnetic to ferromagnetic regimes.

System (1.1)-(1.4) generalizes some classical models for magnetically saturated bodies such as the well known Landau-Lifshitz equation. Landau-Lifshitz equation well describes the magnetization dynamics of ferromagnet at low temperature [22]. The Landau-Lifshitz-Gilbert equation is described as follows

$$M_t = M \times \Delta M - \lambda M \times (M \times \Delta M), \quad M \in \mathbb{S}^2, \tag{1.7}$$

where $M(x,t) = (M_1(x,t), M_2(x,t), M_3(x,t))$ is a magnetization vector, $\lambda > 0$ is a Gilbert constant, "×" denotes the vector outer product. Equation (1.7) has been investigated widely. Many important results have been obtained, see [6, 17, 20, 21] and therein references.

Equation (1.7) with $\lambda = 0$ is so-called Schrödinger map [5]. This Schrödinger map has been widely studied in [1,2,5,7,8,19,21,24–26] and therein references.

The model of [4] is very close to the Landau-Lifshitz-Bloch (LLB) equation. In order to describe the dynamics of magnetization vector Z in a ferromagnetic body for a wide range of temperature, Garanin et. al. [10–12] derived the Landau-Lifshitz-Bloch (LLB) equation from statistical mechanics with the mean field approximation.