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Abstract

The goal of this paper is to study the important diffusive expansion via an
alternative mathematical approach other than that in [21].
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1 Introduction

1.1 Hilbert Expansion with No Boundary Layer Approximations
The hydrodynamic limit of the Boltzmann equation has been the subject of many

studies since the pioneering work by Hilbert, who introduced his famous expansion

in the Knudsen number ε in [37, 38], realizing the first example of the program

he proposed in the sixth of his famous questions [39]. Mathematical results on

the closeness of the Hilbert expansion of the Bolzmann equation to the solutions

of the compressible Euler equations for small Knudsen number ε, were obtained by
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Caflisch [14], and Lachowicz [45], while Nishida [47], Asano and Ukai [4] proved this

by different methods.

On a longer time scale ε−1, where diffusion effects become significant, the prob-

lem can be faced only in the low Mach numbers regime (Mach number of order ε

or smaller) due to the lack of scaling invariance of the compressible Navier-Stokes

equations. Hence the Boltzmann solution has been proved to be close to the incom-

pressible Navier-Stokes-Fourier system. Mathematical results were given, among the

others, in [11, 18, 31, 33, 34] for smooth solutions. For weak solutions (renormalized

solutions), partial results were given, among the others, in [7–10], and the full result

for the convergence of the renormalized solutions has been obtained by Golse and

Saint-Raymond [27].

Much less is known about the steady solutions. It is worth to notice that, even

for fixed Knudsen numbers, the analog of DiPerna-Lions’ renormalized solutions

[19] is not available for the steady case, due to lack of L1 and entropy estimates.

In [29, 30], steady solutions were constructed in convex domains near Maxwellians,

and their positivity was left open. The only other results are for special, essentially

one dimensional geometry (see [3] for results at fixed Knudsen numbers and [1, 2,

22, 23] for results at small Knudsen numbers in certain special 2D geometry). In a

recent paper [20], via a new L2 − L∞ framework, we have constructed the steady

solution to the Boltzmann equation close to Maxwellians, in 3D general domains,

for a gas in contact with a boundary with a prescribed temperature profile modeled

by the diffuse reflection boundary condition. The question about positivity of these

steady solutions was resolved as a consequence of their dynamical stability. As

pointed in [25], despite the importance of steady Navier-Stokes-Fourier equations

in applications, it has been an outstanding open problem to derive them from the

steady Boltzmann theory.

The goal of our paper is to employ the L2−L∞ framework developed in [20] to

study the hydrodynamical limit of the solutions to the steady Boltzmann equation,

in the low Mach numbers regime, in a general domain with boundary where a tem-

perature profile is specified. We refer to [15,16,41–44] for the recent development of

L2 − L∞ framework in various directions.

Let Ω be a bounded open region of Rd for either d = 2 or d = 3. We consider the

Boltzmann equation for the distribution density F (t, x, v) with t ∈ R+ := [0,∞),

x ∈ Ω, v ∈ R3. In the diffusive regime, the time evolution of the gas, subject to the

action of a field G⃗, is described by the following rescaled Boltzmann equation:

∂tF + ε−1v · ∇xF + G⃗ · ∇vF = ε−2Q(F, F ), (1.1.1)

where the Boltzmann collision operator is defined as


