Ann. of Appl. Math. **36**:2(2020), 195-203

A NOTE ON CLINE'S FORMULA FOR TWO SUBCLASSES OF GENERALIZED DRAZIN INVERSES*[†]

Kai Yan[‡]

(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, Fujian, PR China)

Abstract

For a Banach algebra \mathcal{A} with identity and $a, b, c, d \in \mathcal{A}$, the relations between the extended g-Drazin inverse (resp. generalized strong Drazin inverse) of ac and that of bd are given, when bac = bdb and cac = cdb.

Keywords generalized Drazin inverse; extended g-Drazin inverse; generalized strong Drazin inverse; Cline's formula

2010 Mathematics Subject Classification 46H05; 15A09; 46H99

1 Introduction and preliminaries

Let \mathcal{A} be a Banach algebra with identity. For $a \in \mathcal{A}$, the notations $\sigma(a)$, $acc\sigma(a)$ and r(a) denote the spectrum, accumulated spectral points and the spectral radius of a, respectively. The sets of all invertible elements, nilpotent elements and quasinilpotent elements of \mathcal{A} are denoted by \mathcal{A}^{inv} , \mathcal{A}^{nil} and \mathcal{A}^{qnil} , respectively. Set

> $\mathcal{A}^{qnil} = \{ a \in \mathcal{A} : \sigma(a) = \{0\} \};$ $\triangle_1 = \{ a \in \mathcal{A} : \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} = 0 \};$ $\triangle_2 = \{ a \in \mathcal{A} : 1 - ax \in \mathcal{A}^{inv} \text{ for any } x \text{ commuting with } a \}.$

Lemma 1.1^[5] Let \mathcal{A} be a Banach algebra with identity. Then $\mathcal{A}^{qnil} = \triangle_1 = \triangle_2$.

In 1958, Drazin [3] introduced a new notion of invertibility, which is now commonly known as Drazin invertibility, in semigroup. The Drazin inverse plays a significant role in operator theory, singular differential equations, Markov chains, etc., see [1]. Recall that an element $a \in \mathcal{A}$ is Drazin invertible if there exists an element $x \in \mathcal{A}$ such that ax = xa, xax = x and $a - a^2x \in \mathcal{A}^{nil}$. The nilpotent index

^{*}This work was supported by the National Natural Science Foundation of China (Grant No.11901099), the Natural Science Foundation of Fujian Province (Grant No.2018J05004).

[†]Manuscript received July 26, 2019

[‡]Corresponding author. E-mail: yklolxj@163.com

of $a - a^2 x$ is called the Drazin index of a. We use a^D to denote the Drazin inverses of a. By extending nilpotent element to quasinilpotent element, Koliha [6] introduced a concept of generalized Drazin invertibility in Banach algebras.

Definition 1.1^[6] An element $a \in \mathcal{A}$ is generalized Drazin invertible if there exists an element $x \in \mathcal{A}$ such that

$$xa = ax$$
, $xax = x$ and $a - a^2x \in \mathcal{A}^{qnil}$

In this case, x is called the generalized Drazin inverse of a and is denoted by a^{gD} .

If such x exists, it is unique. The notation \mathcal{A}^{gD} denotes the set of all generalized Drazin invertible elements in \mathcal{A} . It is easy to see that $\mathcal{A}^{qnil} \subseteq \mathcal{A}^{gD}$, because the generalized Drazin inverse of a quasinilpotent element is zero. The generalized Drazin spectrum is defined by

$$\sigma_{qD} = \{ \lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{gD} \}$$

In [6], Koliha proved that $a \in \mathcal{A}^{gD}$ if and only if $0 \notin acc\sigma(a)$. This implies $\sigma_{gD}(a) = acc\sigma(a)$. In order to generalize the ideal of Koliha, Mosić [9] introduced a new type of outer generalized inverse.

Definition 1.2^[9] An element $a \in \mathcal{A}$ is extended g-Drazin invertible (or eg-Drazin invertible) if there exists an element $x \in \mathcal{A}$ such that

$$xa = ax$$
, $xax = x$ and $a - a^2x \in \mathcal{A}^{gD}$.

In this case, x is called the extended g-Drazin inverse of a and is designated by a^{ed} .

Different from generalized Drazin inverse, the eg-Drazin inverse is not unique, see [9, Example 2.1]. However, the existence of extended g-Drazin inverse and generalized Drazin inverse are equivalent. We use \mathcal{A}^{ed} to denote the set of all generalized Drazin invertible elements in \mathcal{A} . By Lemma 1.2, we have $\mathcal{A}^{ed} = \mathcal{A}^{gD}$.

Lemma 1.2^[8] Let $a \in A$. The following statements are equivalent:

- (1) a is eg-Drazin invertible;
- (2) a is generalized Drazin invertible;
- (3) $0 \notin \sigma_{qD}(a) (= acc\sigma(a));$
- (4) there exists an idempotent $q \in \mathcal{A}$ such that

$$a = \begin{pmatrix} a_1 & 0\\ 0 & a_2 \end{pmatrix}_q,$$

where $a_1 \in (q\mathcal{A}a)^{-1}$ and $a_2 \in \mathcal{A}^{gD}$.

Motivated by the strong nil-cleanness, the notion of strong Drazin inverse in a ring was introduced and studied in [11]. By extending nilpotent element to quasinilpotent element, the generalized strong Drazin inverse was introduced in Banach algebras. More interesting properties of strong Drazin inverse and generalized