Ann. of Appl. Math. **36**:3(2020), 270-281

BICYCLIC GRAPHS WITH UNICYCLIC OR BICYCLIC INVERSES* †

Xia Wang, Hong Bian[‡]

(School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China)

Haizheng Yu

(College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, PR China)

Abstract

A graph G is nonsingular if its adjacency matrix A(G) is nonsingular. A nonsingular graph G is said to have an inverse G^+ if $A(G)^{-1}$ is signature similar to a nonnegative matrix. Let \mathcal{H} be the class of connected bipartite graphs with unique perfect matchings. We present a characterization of bicyclic graphs in \mathcal{H} which possess unicyclic or bicyclic inverses.

 ${\bf Keywords}\;$ inverse graph; unicyclic graph; bicyclic graph; perfect matching

2000 Mathematics Subject Classification 05C90

1 Introduction

Let G be a simple, undirected graph on n vertices. We denote its vertex set by V(G) and its edge set by E(G). We use P_n to denote the path on n vertices. And we use [i, j] to denote an edge between the vertices i and j. The adjacency matrix A(G) of G is a square symmetric matrix of size n whose (i, j)th entry a_{ij} is 1 if $[i, j] \in E(G)$ and 0 otherwise.

A graph G is nonsingular if its adjacency matrix A(G) is nonsingular. Let G be an unweighted graph and G_W be the positive weighted graph obtained from G by giving weights to its edges using the positive weight function $W: E(G) \to (0, \infty)$.

^{*}Supported by NSFC (Grant No.11761070, 61662079), Postgraduate Innovation Project of Xinjiang, Xinjiang Normal University Undergraduate teaching project (SDJG2017-3), The Opening Project of Key Laboratory of Xinjiang Normal University (No: XJNUSYS082017A02).

[†]Manuscript received January 25, 2020; Revised July 8, 2020

[‡]Corresponding author. E-mail: bh1218@163.com

The unweighted graph G may be viewed as a weighted graph where each edge has weight 1. A perfect matching in a graph G is a collection of vertex disjoint edges that covers every vertex. If a graph G has a unique perfect matching, then we denote it by \mathcal{M} . In addition, when u is a vertex, we shall always use u' to denote the matching mate for u, where the edge $[u, u'] \in \mathcal{M}$. If G is a bipartite graph with a unique perfect matching then it is nonsingular (see [2]).

A unicyclic graph G is a connected simple graph which satisfies |E(G)| = |V(G)|. A bicyclic graph G is a connected simple graph which satisfies |E(G)| = |V(G)| + 1. There are two type of basic bicyclic graphs: ∞ -graphs and θ -graphs. More concisely, an ∞ -graph, denoted by $\infty(p, q, l)$, is obtained from two vertex-disjoint cycles C_p and C_q by connected one vertex of C_p and one of C_q with a path P_l of length l - 1(in the case of l = 1, identifying the above two vertices); and a θ -graph, denoted by $\theta(p, q, l)$, is a union of three internally disjoint paths P_{p+1} , P_{q+1} , P_{l+1} of length p, q, lrespectively with common end vertices, where $p, q, l \geq 1$ and at most one of them is 1. Observe that any bicyclic graph G is obtained from an ∞ -graph or a θ -graph by attaching trees to some of its vertices (see [15]).

One motivation for considering a connected bipartite graph with a unique perfect matching is that in some cases in quantum chemistry, an Hückel graph can be considered as a connected bipartite graph with a unique perfect matching.

We say λ is an eigenvalue of G if λ is an eigenvalue of A(G). We use $\sigma(G)$ to denote the spectrum of G.

In 1976, the notion of an inverse graph was introduced by Harary and Minc (see [5]). A nonsingular graph G is invertible if $A(G)^{-1}$ is a matrix with entries from $\{0,1\}$, and the graph H with adjacency matrix $A(G)^{-1}$ is called the inverse graph of G. However, in the same article, when only one connected graph is invertible, the author proved that a connected graph G is invertible if and only if $G = P_2$. In 1985, another notion of an inverse graph was supplied by Godsil (see [2]). This concept generalizes the definition given by Harary and Minc.

Let \mathcal{H} denote the class of connected bipartite graphs with unique perfect matchings. Let $G \in \mathcal{H}$, then $A(G)^{-1}$ is signature similar to a nonnegative matrix, that is, there exists a diagonal matrix S with diagonal entries from $\{1, -1\}$ such that $SA(G)^{-1}S \geq 0$. The weighted graph associated to the matrix $SA(G)^{-1}S \geq 0$ is called the inverse of G and is denoted by G^+ . A invertible graph G is said to be a self-inverse graph if G is isomorphic to its inverse graph. Let \mathcal{H}_g denote the class of connected bipartite graph with unique perfect matching \mathcal{M} such that G/\mathcal{M} is bipartite.

Definition 1^[7] Let $G \in \mathcal{H}$, then G has at least two pendant (degree one) vertices. An edge of a graph is said to be pendant if one of its vertices is a pendant vertex.