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Abstract

The theme of this article is to provide some sufficient conditions for the
asymptotic property and oscillation of all solutions of third-order half-linear
differential equations with advanced argument of the form(

r2(t)((r1(t)(y
′(t))α)′)β

)′
+ q(t)yγ (σ(t)) = 0, t ≥ t0 > 0,

where
∫∞

r
− 1

α
1 (s)ds < ∞ and

∫∞
r
− 1

β

2 (s)ds < ∞. The criteria in this paper
improve and complement some existing ones. The results are illustrated by
two Euler-type differential equations.
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1 Introduction

In 2019, Chatzarakis ([1]) offered sufficient conditions for the oscillation and

asymptotic behavior of second-order half-linear differential equations with advanced

argument of the form (
r(y′)α

)′
(t) + q(t)yα (σ(t)) = 0,

where
∫∞

r−
1
α (s)ds < ∞.

In 2018, Džurina ([2]) presented new oscillation criteria for third-order delay

differential equations with noncanonical operators of the form(
r2
(
r1y

′)′ )′(t) + q(t)y (τ(t)) = 0, t ≥ t0 > 0.
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In this paper, we consider the oscillatory and asymptotic behavior of solutions

to the third-order half-linear advanced differential equations of the form(
r2(t)((r1(t)(y

′(t))α)′)β
)′
+ q(t)yγ (σ(t)) = 0, t ≥ t0 > 0. (1.1)

Throughout the whole paper, we assume that

(H1) α, β and γ are quotients of odd positive integers;

(H2) the functions r1, r2 ∈ C ([t0,∞), (0,∞)) are of noncanonical type (see

Trench [2]), that is,

π1 (t0) :=

∫ ∞

t0

r
− 1

α
1 (s)ds < ∞, π2 (t0) :=

∫ ∞

t0

r
− 1

β

2 (s)ds < ∞;

(H3) q ∈ C ([t0,∞), [0,∞)) does not vanish eventually;

(H4) σ ∈ C1 ([t0,∞), (0,∞)), σ(t) ≥ t, σ′(t) ≥ 0 for all t ≥ t0.

By a solution of equation (1.1), we mean a nontrivial real valued function y ∈
C([Tx,∞),R), Tx ≥ t0, which has the property that y, r1(y

′)α, r2
(
(r1(y

′)α)′
)β

are

continuous and differentiable for all t ∈ [Tx,∞), and satisfy (1.1) on [Tx,∞). We

only need to consider those solutions of (1.1) which exist on some half-line [Tx,∞)

and satisfy the condition

sup{|y(t)| : T ≤ t < ∞} > 0

for any T ≥ Tx. In the sequel, we assume that (1.1) possesses such solutions.

As is customary, a solution y(t) of (1.1) is called oscillatory if it has arbitrary

large zeros on [Tx,∞). Otherwise, it is called nonoscillatory. Equation (1.1) is said

to be oscillatory if all its solutions oscillate.

Following classical results of Kiguradze and Kondrat’ev [3], we say that (1.1) has

property A if any solution y of (1.1) is either oscillatory or satisfies lim
t→∞

y(t) = 0,

which is also called that equation (1.1) is almost oscillatory.

For brevity, we define operators

L0y = y, L1y = r1(y
′)α, L2y = r2

(
(r1(y

′)α)′
)β
, L3y =

(
r2((r1(y

′)α)′)β
)′
.

Also, we use the symbols ↑ and ↓ to indicate whether the function is nondecreas-

ing and nonincreasing, respectively.

2 Main Results

As usual, all functional inequalities considered in this paper are supposed to hold

eventually, that is, they are satisfied for all t large enough.

Without loss of generality, we need only to consider eventually positive solutions

of (1.1), since if y satisfies (1.1), so does −y.


