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Abstract. In this paper, we study the convergence rate of an Embedded
exponential-type low-regularity integrator (ELRI) for the Korteweg-de Vries
equation. We develop some new harmonic analysis techniques to handle the
“stability” issue. In particular, we use a new stability estimate which allows us
to avoid the use of the fractional Leibniz inequality,
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and replace it by suitable inequalities without loss of regularity. Based on these
techniques, we prove that the ELRI scheme proposed in [41] provides 1

2 -order
convergence accuracy in Hγ for any initial data belonging to Hγ with γ > 3

2 ,
which does not require any additional derivative assumptions.
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1 Introduction

The Korteweg-de Vries (KdV) equation arises as a model equation from the weakly
nonlinear long waves and describes the propagation of shallow water waves in a
channel [23]. It has taken a wide range of applications in a diverse field of the
industries, especially in terms of application and technology. In this paper, we
consider the KdV equation with periodic boundary conditions
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2, t>0, x∈T,

u(0,x)=u0(x), x∈T,
(1.1)

where T=(0,2π), u=u(t,x) :R+×T→R is the unknown and u0∈Hs0(T) with some
0≤s0<∞ is a given initial data.

Many authors have studied the initial value problem of the KdV equation both
on the real line and in the period case, and established the global well-posedness
in Hs for s≥−1; see [4, 18, 20]. The numerical solution of the KdV equation has
been important in a wide range of fields. One interesting question in the numerical
solution of the KdV equation is how much regularity is required in order to have
certain desired convergence rates. Correspondingly, many numerical methods and
numerical analysis were developed to address this question, including finite difference
methods [5, 17, 21, 37], finite element methods [1, 6, 38], operator splitting [14–16,
36], spectral methods [7, 28, 29, 35], discontinuous Galerkin methods [26, 42] and
exponential integrators [2, 11, 12].

Among the many numerical time integration methods for time-dependent partial
differential equations (PDEs), the splitting methods are very popular in many clas-
sic studies. We refer the readers to [8, 13, 30] for an extensive overview of splitting
methods. As far as we know, operator splitting methods for the KdV equation (of-
ten referred to as fractional-step methods) first appeared in [36] and were analysed
rigorously in [15]. Operator splitting methods have been developed into a systematic
approach for constructing time-stepping methods for evolutionary PDEs. In partic-
ular, Holden et al. [14, 16] proved that the Godunov and Strang splitting methods
for the KdV equation converge with the first-order and the second-order rates in
Hγ with γ ≥ 1, if the initial datum belong to Hγ+3 and Hγ+5, respectively. For
the nonlinear Schrödinger equation (NLS), Lubich [27] proved that for the initial
data in H4, the Strang splitting scheme provides the first-order and the second-
order convergence in H2 and L2, respectively. In addition to the splitting method,
exponential integrators is also a very effective numerical method for solving par-
tial differential equations including hyperbolic and parabolic problems [9, 10]. In
particular, Hochbruck and Ostermann [11] presented some typical applications that


