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Abstract. We consider the two-dimensional Cahn-Hilliard equation with loga-
rithmic potentials and periodic boundary conditions. We employ the standard
semi-implicit numerical scheme, which treats the linear fourth-order dissipation
term implicitly and the nonlinear term explicitly. Under natural constraints on
the time step we prove strict phase separation and energy stability of the semi-
implicit scheme. This appears to be the first rigorous result for the semi-implicit
discretization of the Cahn-Hilliard equation with singular potentials.
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1 Introduction

Consider the 2D Cahn-Hilliard equation on Ω=T2=[−π,π)2:
{
∂tu=∆µ=∆(−ν∆u+F ′(u)), (t,x)∈(0,∞)×Ω,

u
∣∣
t=0

=u0,
(1.1)
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where u :Ω→ (−1,1) is the order parameter of a two-phase system such as a binary
alloy, and the term µ denotes the chemical potential. The two end-points u=±1
correspond to pure states. The coefficient ν >0 denotes mobility. In this paper we
take it to be a constant parameter. The thermodynamic potential F : (−1,1)→R is
given by

F (u)=
θ

2

(
(1+u)ln(1+u)+(1−u)ln(1−u)

)
− θc

2
u2, 0<θ<θc, (1.2a)

f(u)=F ′(u)=−θcu+
θ

2
ln
1+u

1−u=:−θcu+f̃(u), F ′′(u)=
θ

1−u2−θc, (1.2b)

where the logarithmic part accounts for the entropy of mixing. The parameters θ and
θc corresponds to the absolute temperature and the critical temperature respectively.
Denote by u+>0 the positive root of the equation f(u)=0 (see (1.2b)). Under the
condition 0<θ<θc the potential F takes the form of a double-well with two equal
minima at u+ and −u+ which are usually called binodal points. One should note
that the condition 0<θ<θc is of physical importance since it guarantees that that F
has a double-well form and phase separation can indeed occur. For us=(1−θ/θc)

1

2 ,
the region (−us,us), where F ′′(u)<0 is called the spinodal interval. If the quenching
is shallow, i.e., the temperature θ is close to the absolute temperature θc, then one
can expand near u=0 and obtain the usual quartic polynomial approximation of
the free energy.

The usual energy conservation takes the form:

d

dt
E(u)=−‖|∇|−1∂tu‖22, E(u)=

∫

Ω

(1
2
ν|∇u|2+F (u)

)
dx. (1.3)

Note that for u∈ (−1,1), the term F (u) is bounded by an absolute constant, and
the only coercive quantity in E(u) is the gradient term.

Remark 1.1. We note that the usual quartic polynomial approximation of the free
energy F (u) is given by (below the series converges for u∈ [−1,1])

F (u)=− θc
2
u2+θ

∞∑

k=0

u2k+2

(2k+1)(2k+2)

≈Fquartic(u)=
θ

2
·u

4

6
+
(θ
2
− θc

2

)
u2.

The standard double-well potential const·(u2−1)2 corresponds to the specific choice
θ/θc=3/4. However, this approximation introduces a nontrivial shift of the location
of the minimum. Namely for the original free energy F (u), its two equal minima


