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Abstract. We investigate the thermal instability of a three-dimensional
Rayleigh–Bénard (RB for short) problem without thermal diffusion in a bounded
domain. First we construct unstable solutions in exponential growth modes for
the linear RB problem. Then we derive energy estimates for the nonlinear so-
lutions by a method of a prior energy estimates, and establish a Gronwall-type
energy inequality for the nonlinear solutions. Finally, we estimate for the error
of L1-norm between the both solutions of the linear and nonlinear problems,
and prove the existence of escape times of nonlinear solutions. Thus we get the
instability of nonlinear solutions under L1-norm.
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1 Introduction

Thermal instability often arises when a fluid is heated from below. The phenomenon
of thermal convection itself had been recognized by Rumford [24] and Thomson [25].
However, the first quantitative experiment on thermal instability and the recognition
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of the role of viscosity in the phenomenon are due to Bénard [2]. The Bénard con-
vection can be modeled by the (nonlinear) compressible Navier–Stokes–Fourier (sim-
plified by NSF) equations [11]. Since the continuity equation in the NSF equations
is hyperbolic, thus it is difficult to theoretically investigate the thermal convection.
Later Rayleigh investigated thermal convection by using Boussinesq (approxima-
tion) equations, in which the density is considered as a constant in all the terms
of the equations except for the gravity term that is assumed to vary linearly with
the temperature [4]. Compared with the compressible NSF model, the Boussinesq
model is fully parabolic due to the absence of the continuity equation. Thus, based
on the linearized Boussinesq model, Rayleigh first theoretically provided the insta-
bility criterion for the occurrence of thermal convection [3, 23]. After Rayleigh’s
pioneering work, the instability criterion had been further mathematically verified
for the nonlinear Boussinesq model in the Hadamard sense by the energy method
and the bootstrap instability method, see [13, 20] for examples. At present, it has
been also widely investigated how the thermal instability evolves under the effects
of other physical factors, such as the elasticity [19], rotation [7, 10], the magnetic
field [6, 8, 9], surface tension [22] and so on. Recently Ma and Wang also estab-
lished mathematical theory of attractor bifurcation for two-dimensional Boussinesq
model [21]. However, the corresponding three-dimensional case is still an open prob-
lem.

It is physically well-known that the system of nonlinear Boussinesq equations is
always unstable, if the thermal diffusion is absent. However there is not any available
mathematical proof for this physical assertion. In this paper, we try to mathemati-
cally prove this assertion. To begin with, we shall introduce the three-dimensional
(3D for short) Rayleigh–Bénard (RB for short) equations without thermal diffusion
in a bounded domain Ω:

vt+v ·∇v+∇p/ρ=g(α(Θ−Θb−1)e3)+µ∆v,

Θt+v ·∇Θ=0,

divv=0.

(1.1)

Next we further explain the notations in the equations above.
The unknowns v= v(x,t), Θ = Θ(x,t) and p= p(x,t) denote velocity, tempera-

ture and pressure of an incompressible fluid, resp.. The parameters ρ,α,µ>0 and
g>0 denote the density constant at some properly chosen temperature parameter
Θb, the coefficient of volume expansion, shear viscosity coefficient, and the gravita-
tional constant, respectively. gρα(Θ−Θb)e3 stands for the buoyancy, −ρge3 for the
gravitational force, where e3 =(0,0,1)T and T denotes the transposition.

The rest state of the system (1.1) can be given by rB:=(0, Θ̄) with an associated
pressure profile p̄, where the temperature profile Θ̄ and p̄ depend on x3 only, and


