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Abstract. We consider a gradient iteration algorithm for prediction of func-
tional linear regression under the framework of reproducing kernel Hilbert spaces.
In the algorithm, we use an early stopping technique, instead of the classical
Tikhonov regularization, to prevent the iteration from an overfitting function.
Under mild conditions, we obtain upper bounds, essentially matching the known
minimax lower bounds, for excess prediction risk. An almost sure convergence
is also established for the proposed algorithm.
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1 Introduction

Due to advance in technology, data are increasingly collected in the form of random
functions or curves, as opposed to scalars or vectors. Functional data analysis (FDA)
is developed to handle this situation, has drawn considerable attention in recent
decades. Various approaches for the analysis of functional data have been developed
and proposed in the literature [6, 8, 12,13,17], offering a comprehensive overview.
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Among many problems involving functional data, functional linear regression is
widely used to model the prediction of a functional predictor. Consider the following
functional linear regression model

Y =α0+

∫
I
X(s)β0(s)ds+ε, (1.1)

where Y is a scalar response, X(·) is a square integrable random function (with
respect to Lesbesgue measure) on a bounded interval I, α0 is the intercept, β0(·)
is an unknown slope function and ε is a centered noise random variable. Without
loss of much generality, throughout the paper we assume E(X)=0 and the intercept
α0 =0, since the intercept can be easily estimated.

The goal of the prediction problems is to estimate the functional

η0(X) :=

∫
I
X(s)β0(s)ds

based on a set of training data {(Xi,Yi) : i= 1,··· ,n} consisting of n independent
copies of (X,Y ). Define the risk for a prediction η as

E(η) :=E∗[Y ∗−η(X∗)]2,

where (X∗,Y ∗) is a copy of (X,Y ) independent of the training data, and E∗ repre-
sents expectations taken over X∗ and Y ∗ only. Let η̂ be a prediction constructed
from the training data. Then, its accuracy can be naturally measured by the excess
risk:

E(η̂)−E(η0)=E∗[η̂(X∗)−η0(X∗)]2. (1.2)

In the context of functional linear regression, most of existing methods are based
upon functional principal analysis (FPCA), see, e.g., [2, 7, 13, 19]. The FPCA ap-
proach expands the unknown function β0 using the eigenfunction of the predictor
covariance operator. For such a strategy to work well, it is usually necessary to
assume that such a basis provides a good presentation of the slope function, which
may not have anything to do with the predictor in terms of basis representation
accuracy. A more general assumption for slope function may be on its smoothness,
it makes a reproducing kernel Hilbert space (RKHS) [9] an interesting alternative,
see [3, 11, 20]. In particular, it has already been shown in [3] that the approach
based on RKHS performs better when the slope function does not align well with
the eigenfunctions of the covariance kernel.

Motivated by these observations, in this paper we will develop an iterative esti-
mation procedure for functional linear model (1.1) within the framework of RKHS,
under which the unknown slope function β0 is assumed to reside in an RKHS HK .


