Negligible Obstructions and Turán Exponents

Tao Jiang¹, Zilin Jiang²,* and Jie Ma³

¹ Department of Mathematics, Miami University, Oxford, OH 45056, USA
² School of Mathematical and Statistical Sciences, and School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA
³ School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 31 March 2022; Accepted (in revised version) 31 July 2022

Abstract. We show that for every rational number \(r \in (1,2) \) of the form \(2 - a/b \), where \(a, b \in \mathbb{N}^+ \) satisfy

\[
[b/a]^2 \leq a \leq b/((b/a) + 1) + 1,
\]

there exists a graph \(F_r \) such that the Turán number \(\text{ex}(n,F_r) = \Theta(n^r) \). Our result in particular generates infinitely many new Turán exponents. As a byproduct, we formulate a framework that is taking shape in recent work on the Bukh–Conlon conjecture.

AMS subject classifications: 05C35

Key words: Extremal graph theory, turán exponents, bipartite graphs.

1 Introduction

Given a family \(\mathcal{F} \) of graphs, the Turán number \(\text{ex}(n,\mathcal{F}) \) is defined to be the maximum number of edges in a graph on \(n \) vertices that contains no graph from the family \(\mathcal{F} \) as

*Corresponding author.

Emails: jiangt@miamioh.edu (T. Jiang), zilinj@asu.edu (Z. Jiang), jiema@ustc.edu.cn (J. Ma)
a subgraph. The classical Erdős–Stone–Simonovits theorem shows that arguably the most interesting problems about Turán numbers, known as the degenerate extremal graph problems, are to determine the order of magnitude of $ex(n, \mathcal{F})$ when \mathcal{F} contains a bipartite graph. The following conjecture attributed to Erdős and Simonovits is central to Degenerate Extremal Graph Theory (see [16, Conjecture 1.6]).

Conjecture 1.1 (Rational Exponents Conjecture). For every finite family \mathcal{F} of graphs, if \mathcal{F} contains a bipartite graph, then there exists a rational $r \in [1, 2)$ and a positive constant c such that $ex(n, \mathcal{F}) = cn^r + o(n^r)$.

Recently Bukh and Conlon made a breakthrough on the inverse problem [16, Conjecture 2.37].

Theorem 1.1 (Bukh and Conlon [3]). For every rational number $r \in (1, 2)$, there exists a finite family of graphs \mathcal{F}_r such that $ex(n, \mathcal{F}_r) = \Theta(n^r)$.

Motivated by another outstanding problem of Erdős and Simonovits (see [10, Section III] and [11, Problem 8]), subsequent work has been focused on the following conjecture, which aims to narrow the family \mathcal{F}_r in Theorem 1.1 down to a single graph.

Conjecture 1.2 (Realizability of Rational Exponents). For every rational number $r \in (1, 2)$, there exists a bipartite graph F_r such that $ex(n, F_r) = \Theta(n^r)$.

It is believed that the graph F_r in Conjecture 1.2 could be taken from a specific yet rich family of graphs, for which we give the following definitions.

Definition 1.1. A rooted graph is a graph F equipped with a subset $R(F)$ of vertices, which we refer to as roots. We define the pth power of F, denoted F^p, by taking the disjoint union of p copies of F, and then identifying each root in $R(F)$, reducing multiple edges (if any) between the roots.

Definition 1.2. Given a rooted graph F, we define the density ρ_F of F to be $e(F)/(v(F) - |R(F)|)$, where $v(F)$ and $e(F)$ denote the number of vertices and respectively edges of F. We say that a rooted graph F is balanced if $\rho_F > 1$, and for every subset S of $V(F) \setminus R(F)$, the number of edges in F with at least one endpoint in S is at least $\rho_F |S|$.

Indeed the next result on Turán numbers, which follows immediately from [3, Lemma 1.2], establishes the lower bound in Conjecture 1.2 for some power of a balanced rooted tree.†

†Erdős and Simonovits asked a much stronger question: for every rational number $r \in (1, 2)$, find a bipartite graph F_r such that $ex(n, F_r) = cn^r + o(n^r)$ for some positive constant c.

‡A rooted tree is a rooted graph that is also a tree, not to be confused with a tree having a designated vertex.