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Abstract. We study the homogenization of a boundary obstacle problem on
a C1,α-domain D for some elliptic equations with uniformly elliptic coefficient
matrices γ. For any ε∈R+, ∂D=Γ∪Σ, Γ∩Σ=∅ and Sε⊂Σ with suitable assump-
tions, we prove that as ε tends to zero, the energy minimizer uε of

∫
D |γ∇u|

2dx,
subject to u≥ϕ on Sε, up to a subsequence, converges weakly in H1(D) to ũ,
which minimizes the energy functional∫
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|γ∇u|2+

∫
Σ

(u−ϕ)2
−µ(x)dSx,

where µ(x) depends on the structure of Sε and ϕ is any given function in C∞(D).
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1 Introduction

Let D⊂Rn (n>2) be a bounded open subset, whose boundary satisfies

∂D=Γ∪Σ, Γ∩Σ=∅ and ∂D∈C1,α, (1.1)

for some constant α∈(0,1). For any ε∈R+, let Sε be a subset of Σ with some special
structure, which will be specified later. Throughout, we assume:

(a1) γ(x)=(γij(x))n×n is an n×n symmetric matrix-valued function on D and there
exist two positive constants a and b with a≤b such that

aI≤γ(x)≤bI, x∈D,

where I is the identity matrix;

(a2) ϕ and ψ are both smooth functions defined on D.

Consider the following variational problem

inf
v∈K

J(v), (1.2)

where

J(v) :=

∫
D

|γ∇v|2dx, (1.3)

and
K :={v∈H1(D) :v|Γ =ψ and v|Sε≥ϕ}. (1.4)

Let uε be the solution to the variational problem (1.1)–(1.3). Here we focus on the
study of the asymptotic behavior of uε when ε→0 under suitable assumptions on Sε
and Σ. That is, we are concerned with the boundary homogenization associated with
the variational problem (1.2). This is an important problem with many practical
applications. For instance, (1.2) can be used to describe the mathematical model for
semipermeable membranes, where the function ϕ(x) signifies an external pressure,
and the set Sε is considered as a subset of the boundary composed of the part through
which the liquid passes on the semipermeable membrane. Interested readers may
refer to [9] and the references therein for more details.

In case that γ(x) is the identity matrix I, there is a long history in studying (1.2)
with rich results in the literature. When the set Sε lies inside D, the problem can be
viewed as the homogenization of a variational problem on a perforated domain. For
this problem, [6, 7] firstly considered the periodic homogenization and established
that the limiting energy functional contains a strange term which depends on the
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capacity of Sε. Later [3] obtained the stochastic homogenization result under the
setting of the stationary ergodic case. For more general energy structure, see [1]
and [23] and the references cited therein. When Sε⊂∂D, the problem becomes more
tricky. If Sε lies on the straight part of the boundary with some suitable assump-
tions, Caffarelli and Mellet [4] established the random homogenization result of (1.2)
under the stationary ergodic setting. If Sε and ∂D satisfy more general conditions,
Yang [24] established the homogenization result, which contains an unusual term in
the limiting functional.

In this paper, we considered the general case when γ is a variable matrix-valued
function as prescribed in (a1), which is equivalent to introducing a Riemannian
metric to the variational problem (1.1)–(1.3) in the domain D. Before stating the
main result, we made the following assumptions on the precise structure Sε in our
setting.

First, for any ε>0, we define

Tε=
(⋃

k

Brε,k(xε,k)
)
∩D and Sε=

(⋃
k

Brε,k(xε,k)
)
∩Σ, (1.5)

where xε,k∈Σ. It is assumed that for any k,k̃∈Zn and (k 6= k̃), there holds

|xε,k−xε,k̃|≥2ε. (1.6)

The assumption (1.6) implies that the centers of the balls are periodically distributed
in the obstacle set Σ and those balls are mutually disjoint, which is a common and
applicable situation in the field of homogenization theory. Note that the center
points are taken on a compact set and there can be only a finite number of them
and the number of balls is dependent on their capacity or volume.

Next we assume there exist two positive constants c1 and c2 (independent of k
and ε) such that

rε,k= r̃ε,kε
n−1
n−2 , (1.7)

where 0<c1≤ r̃ε,k≤c2. Clearly, the number of such balls is O(ε1−n).
Then, we construct a class of density functions µε(x) on D as follows :

µε(x) :=
∑
k

(∑∞
i=1C̃iε

i−1
)
r̃n−2
ε,k

εr̃n−2
ε,k −1

∇·(γTγx)
1

ε
χBε(xε,k)(x), (1.8)

where χBε(xε,k)(x) is the characteristic function of Bε(xε,k) and {C̃i}∞i=1 are bounded.
We shall assume that µε converges properly as ε→ 0 as descried in the following
theorem.

The main result of this paper is given as follows.
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Theorem 1.1. Assume that as ε→ 0, µε(x)dx→µ(x)dSx in H−1(D), where µ(x)
is some density function on Σ. If uε is the minimizer of (1.2), then as ε→ 0, uε

converges weakly to ũ in H1(D), where ũ minimizes

Jµ(v)=

∫
D

|γ∇v|2dx+cn

∫
Σ

(v−ϕ)2
−µ(x)dSx

over
K̃={v∈H1(D) :v|Γ =ψ}.

Here (v−ϕ)−=−min{v−ϕ,0} and cn is a positive constant depending only on n.

Remark 1.1. We would like to point out that a similar assumption to the one
in Theorem 1.1 was considered in [24]. However, the author in [24] considered
the special case of Theorem 1.1 with γ = I. The presence of a general γ makes
the corresponding analysis in proving Theorem 1.1 more challenging and subtle.
Roughly speaking, we mainly construct the corrector ωε(x) in Proposition 2.1 by
means of the fundamental solution of the equation

∇·(γTγ∇u)=0.

Since this solution is associated with asymptotic expansion of dg(x,y) (see Section
3), we need to deal with multiple terms in the process of estimating the corrector
ωε.

Finally, we would like to mention in passing a related inverse problem of recon-
structing γ and the inaccessible part Σ by knowledge of v on Γ; see [11–14,19,25] for
related mathematical formulation as well as [2, 5, 8, 15–18, 21] for some background
discussion. Our study paves the way for such an inverse problem study and we
shall address it in our future work. The remaining part of this paper is arranged
as follows. In Section 2, we introduce a key lemma for correctors, Proposition 2.1,
with which Theorem 1.1 can be proved. In Section 3, we construct the corrector and
show that it satisfies the conditions (2.1a)–(2.1d) in Proposition 2.1. In Section 4,
we establish the limiting property of the corrector to finish the proof of Proposition
2.1.

In what follows, C shall signify a generic positive constant which may vary in
different inequalities. The symbol “⇀” denotes the notion of weak convergence.

2 Proof of the main theorem

The proof of the Theorem 1.1 critically relies on the following proposition, whose
proof is postponed to Section 3–4.
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Proposition 2.1. For any ε>0, let Tε and Sε be defined by (1.5), and the density
function µε(x) is given by (1.8). Assume that as ε→0, µε(x)dx→µ(x)dSx in H−1(D),
where µ(x) is some density function on Σ. Then there exists a function ωε(x)∈H1(D)
satisfying the following conditions:

ωε(x)=1, ∀x∈Tε, (2.1a)

∇·(γTγ∇ωε)=0, ∀x∈D, (2.1b)

||ωε||L∞(D)≤C, (2.1c)

ωε(x)⇀0 in H1(D) as ε→0. (2.1d)

Furthermore, given any function vε∈H1(D) satisfying:

vε(x)≥0 for x∈ Tε, ||vε||L∞≤C,
vε⇀v in H1(D) as ε→0,

then there holds:

lim
ε→0

∫
D

(γ∇ωε)·(γ∇vε)φdx≥−
∫

Σ

vφµ(x)dSx (2.2)

for any φ(x)∈C∞(D) with φ|Γ =0. The equality in (2.2) also holds if vε=0 on Tε.

From the above proposition, we have the following result :

Lemma 2.1. For any φ∈{φ∈C∞(D) :φ|Γ =0}, we have that

lim
ε→0

∫
D

|γ∇ωε|2φdx=

∫
Σ

φµ(x)dSx.

Proof. Set vε=1−ωε, then we see obviously that vε|Tε=0 and vε⇀1 in H1(D). Using
Proposition 2.1, one can readily show that

lim
ε→0

∫
D

|γ∇ωε|2φdx=

∫
Σ

φµ(x)dSx.

Thus, we complete the proof.

By Lemma 2.1 and Proposition 2.1, we have the following property :

Lemma 2.2. Assume that uε⇀ũ in H1(D), then we have the following lower semi-
continuous property :

liminf
ε→0

∫
D

|γ∇uε|2dx≥
∫
D

|γ∇ũ|2dx+

∫
Σ

(ũ−ϕ)2
−µ(x)dSx.
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Proof. Let us decompose uε=uε+−uε−. Then we obviously have uε+⇀ũ+ in H1(D)
(uε−⇀ũ− in H1(D) respectively).

For uε+, we apply the classical lower semi-continuity property :

liminf
ε→0

∫
D

|γ∇uε+|2dx≥
∫
D

|γ∇ũ+|2dx.

In order to prove Lemma 2.2, we need to prove the following modified lower semi-
continuity property :

liminf
ε→0

∫
D

|γ∇uε−|2dx≥
∫
D

|γ∇ũ−|2dx+

∫
Σ

(ũ−ϕ)2
−µ(x)dSx.

Here we consider the following two estimates :

liminf
ε→0

1

2

∫
ωε≤θ
|γ∇uε−|2dx≥

∫
D

(γ∇φ)·(γ∇ũ−)dx− 1

2

∫
D

|γ∇φ|2dx, (2.3a)

1

2

∫
ωε>θ

|γ∇uε−|2dx≥−
1

2

∫
D

|γ∇ωε|2φ̃2dx−
∫
D

(γ∇ωε)·(γ∇uε−)φ̃dx

+Cθ+Cθ
1
2 , (2.3b)

where θ is a positive (small) constant, and φ, φ̃ are two test functions (to be deter-
mined).

Suppose the above two estimates hold. Then we can use Proposition 2.1 and
Lemma 2.1 to obtain

liminf
ε→0

∫
D

1

2
|γ∇uε|2dx≥liminf

ε→0

(
1

2

∫
ωε≤θ
|γ∇uε−|2dx+

1

2

∫
ωε>θ

|γ∇uε−|2dx
)

≥
∫
D

(γ∇φ)·(γ∇ũ−)dx− 1

2

∫
D

|γ∇φ|2dx

− 1

2

∫
Σ

φ̃2µ(x)dSx+

∫
Σ

(ũ−ϕ)−φ̃µ(x)dSx+Cθ+Cθ
1
2 .

Since θ is arbitrarily small, we can further obtain

liminf
ε→0

1

2

∫
D

|γ∇uε|2dx≥liminf
ε→0

(
1

2

∫
ωε≤θ
|γ∇uε−|2dx+

1

2

∫
ωε>θ

|γ∇uε−|2dx
)

≥
∫
D

(γ∇φ)·(γ∇ũ−)dx− 1

2

∫
D

|γ∇φ|2dx

− 1

2

∫
Σ

φ̃2µ(x)dSx+

∫
Σ

(ũ−ϕ)−φ̃µ(x)dSx. (2.4)
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If we choose φ= ũ− and φ̃=(ũ−ϕ)− in (2.4), we can readily have

liminf
ε→0

∫
D

|γ∇uε|2dx≥
∫
D

|γ∇ũ|2dx+

∫
Σ

(ũ−ϕ)2
−µ(x)dSx.

Hence, it is sufficient for us to establish the estimate (2.3a) and (2.3b). Next, we
shall first prove (2.3a).

From Young’s inequality, we have the following estimate:∫
ωε<θ

(γ∇φ)·(γ∇uε−)dx≤ 1

2

∫
ωε<θ

|γ∇φ|2dx+
1

2

∫
ωε<θ

|γ∇uε−|2dx.

Since ωε⇀0 in H1(D), so |ωε>θ|→0, when ε goes to zero. Therefore

lim
ε→0

∫
ωε>θ

|γ∇φ|2dx=0.

By Hölder’s inequality, it holds that∫
ωε>θ

(γ∇φ)·(γ∇uε−)dx≤
(∫

ωε>θ

|γ∇φ|2dx
) 1

2
(∫

ωε>θ

|γ∇uε−|2dx
) 1

2

,

which implies that

lim
ε→0

∫
ωε>θ

(γ∇φ)·(γ∇uε−)dx=0.

Since uε−⇀ũ− in H1(D), we then arrive at the estimate (2.3a).
We proceed to establish the estimate (2.3b). From Young’s inequality, we have

that

−
∫
ωε>θ

(γ∇ωε)·(γ∇uε−)φ̃dx≤ 1

2

∫
ωε>θ

|γ∇ωεφ̃|2dx+
1

2

∫
ωε>θ

|γ∇uε−|2dx,

which in turn implies

1

2

∫
ωε>θ

|γ∇uε−|2dx

≥−
(∫

D

−
∫
ωε<θ

)
(γ∇ωε)·(γ∇uε−)φ̃dx− 1

2

(∫
D

−
∫
ωε<θ

)
|γ∇ωεφ̃|2dx. (2.5)

Now we set

A :=

∫
ωε<θ

(γ∇ωε)·(γ∇uε−)φ̃dx, (2.6a)

B :=

∫
ωε<θ

|γ∇ωεφ̃|2dx. (2.6b)
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For A in (2.6a), we apply the Hölder’s inequality to obtain

A≤
(∫

ωε<θ

|γ∇ωεφ̃|2dx
) 1

2
(∫

ωε<θ

|γ∇uε−|2dx
) 1

2

≤C
(∫

ωε<θ

|γ∇ωεφ̃|2dx
) 1

2

, (2.7)

where C is a constant depending only on a and b in the assumption (a1). Next, we
prove that B≤Cθ, which together with (2.7) readily yields (2.3b).

Let ωεθ = (θ−ωε)+. Then ωεθ ∈H1
0 (D) and ωεθ⇀θ in H1

0 (D). By integration by
parts,

lim
ε→0

∫
D

(γ∇ωε)·(γ∇(ωεθφ̃
2))dx=0,

where we have used the fact that

∇·(γTγ∇ωε)=0.

Thus

lim
ε→0

∫
D∩{ωε<θ}

|γ∇ωε|2φ̃2dx=lim
ε→0

∫
D∩{ωε<θ}

(γ∇ωε)·(γ∇φ̃2)ωεθdx.

Since ωε is bounded in H1(D), we can apply the Hölder’s inequality to obtain

∫
D∩{ωε<θ}

(γ∇ωε)·(γ∇φ̃2)ωεθdx≤C
(∫

D

|ωεθ|2dx
) 1

2

.

Noting ωε⇀ 0 in H1(D), by the Sobolev embedding theorem [10], we can further
obtain that

lim
ε→0

(∫
D

|ωεθ|2dx
) 1

2

=θ.

Therefore, it holds that

B=

∫
ωε<θ

|γ∇ωεφ̃|2dx≤Cθ,

which completes the proof of estimate (2.3b). The proof is completed.

With Proposition 2.1 and Lemmas 2.1 and 2.2, one can handily prove Theo-
rem 1.1 by following a similar argument to that in [23], which we only sketch as
follows.
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Proof of Theorem 1.1. The proof can be divided into three steps:

Step i. Choose an arbitrary function v∈H1(D) such that v|Γ =ψ(x), and we can
guarantee that v+(v−ϕ)−ω

ε∈K under some assumption. Thus

J(v+(v−ϕ)−ωε)≥J(uε).

Step ii. By Proposition 2.1 and Lemma 2.1, we can show

lim
ε→0

J(v+(v−ϕ)−ωε)≤Jµ(v),

and hence
limsup
ε→0

J(uε)≤Jµ(v).

Step iii. By Lemma 2.2, we have

liminf
ε→0

J(uε)≥Jµ(ũ),

and hence
Jµ(ũ)≤Jµ(v).

This completes the proof.

3 Construction of the corrector and its property

Let us first introduce the following Laplace-Beltrami operator associated with a
Riemannian metric g(x) = (gij(x)), which is a symmetric positive definite matrix-
valued function in local coordinates:

∆gu= |g|−1/2

n∑
i,j=1

∂

∂xi

(
|g|1/2gij ∂u

∂xj

)
, x=(xj)nj=1∈Rn, (3.1)

where G=det(g) and (gij)=(gij)
−1. By [20, 22], we know that there exists Green’s

function Φg(x,y) satisfying
−∆gΦg(x,y)=δ(x−y), x,y∈Rn,

∂Φg(x,y)

∂|x|
=O(|x|−2) as |x|→∞,

and possessing the following expansion in a small open neighborhood of y :

Φg(x,y)∼C1(x)dg(x,y)2−n+C2(x)dg(x,y)3−n+···
+Cn−2(x)dg(x,y)−1+Cn(x)dg(x,y)+··· ,

∇xΦg(x,y)∼C ′1(x)dg(x,y)1−nVx,y+C ′2(x)dg(x,y)2−nVx,y+··· ,



J. Li et al. / Ann. Appl. Math., 38 (2022), pp. 240-260 249

where dg(x,y) is the Riemannian distance function and Cj(x)∈C∞ for all j∈N. In
what follows, we treat γ equivalent to |g|1/2g−1.

Next, we begin to construct corrector ωε. Define

ωε,k(x) :=


1, dg(x,xε,k)≤rε,k,
Φg(x,xε,k)−ε2−n

r2−n
ε,k −ε2−n

, rε,k<dg(x,xε,k)<ε,

0, otherwise.

(3.2)

Evidently, the support of ωε,k is situated in the ball Bε(xε,k), and these balls are
disjoint through our assumptions. Thus we can select our corrector as follows :

ωε :=
∑
k

ωε,k.

It is easy to see that
||ωε||L∞(D)≤C.

We proceed to verify the conditions (2.1d) and (2.2) in Proposition 2.1. Firstly, we
can obtain the following result :

lim
ε→0

∫
D

|ωε|2dx=0. (3.3)

In fact, one can deduce that∫
Bε

|ωε|2dx= |Brε|+
∫
Bε\Brε

|ωε|2dx

≤|Brε|+
C

(r2−n
ε −ε2−n)2

∫
Bε\Brε

(
dg(x,0)2−n−ε2−n+

∞∑
j=3,j 6=n

dg(x,0)j−n

)2

dx

≤|Brε|+
C(n)

(r2−n
ε −ε2−n)2

∫ ε

rε

(
(r2−n−ε2−n)2rn−1+

∞∑
j=3,j 6=n

r2j−2nrn−1

+(r2−n−ε2−n)
∞∑

j=3,j 6=n

rj−nrn−1

)
dr

≤|Brε|+C(n)O(εn)+
C(n)

(r2−n
ε −ε2−n)2

∫ ε

rε

(
∞∑
j=3

r2j−n−1+(r2−n−ε2−n)
∞∑
j=3

rj−1

)
dr

≤|Brε|+C(n)

(
O(εn)+

∞∑
j=4

max

{
O(εn+j),O

(
ε
(n−1)(n+j−2)

n−2

)}
+
∞∑
j=1

O(ε2n+j)

)
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≤C(n)

(
O(εn)+max

{
O(εn+3),O(ε

n(n−1)
n−2 )

}
+O(ε2n)

)
≤C(n)O(εn),

which readily yields (3.3).
Secondly, we can estimate the term ||∇ωε||L2(D) as follows:∫

Bε

|∇ωε|2dx≤
C

(r2−n
ε −ε2−n)2

∫
Bε\Brε

∞∑
j=1,j 6=n

dg(x,0)2j−2ndx

≤ C(n)

(r2−n
ε −ε2−n)2

∫ ε

rε

(
r1−n+

∞∑
j=2

r2j−n−1

)
dr

≤C(n)

(
O(εn−1)+

∞∑
j=2

max

{
O(εn+j),O(ε

(n+j−2)(n−1)
n−2 )

})

≤C(n)

(
O(εn−1)+max

{
O(εn+1),O(ε

(n−1)2

n−2 )

})
≤C(n)O(εn−1),

which in turn implies that ∫
D

|∇ωε|2dx≤C. (3.4)

Finally, we can combine the estimates (3.3) and (3.4) to derive that

ωε⇀0 in H1(D),

which readily verifies the condition (2.1d).

4 Limiting property of the corrector

To complete the proof of Proposition 2.1, it suffices to verify the inequality (2.2).
For simplicity, we write

Bε,k := Bε(xε,k)\Brε,k(xε,k), Dε,k := (Bε(xε,k)\Brε,k(xε,k))∩D.

If ε is sufficiently small, we clearly have∫
D

(γ∇ωε)·(γ∇vε)φdx=
∑
k

∫
Dε,k

(γ∇ωε)·(γ∇vε)φdx.
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Integrating by parts, it holds that∫
Dε,k

(γ∇ωε)·(γ∇vε)φdx

=

∫
Dε,k

∇·(γTγ∇ωεvεφ)dx−
∫
Dε,k

(γ∇ωε)·(γ∇φ)vεdx

=

∫
∂Dε,k

(γTγ∇ωε)·−→ν vεφdSx−
∫
Dε,k

(γ∇ωε)·(γ∇φ)vεdx

=

∫
∂Dε,k

(γ∇ωε)·(γ−→ν )vεφdSx−
∫
Dε,k

(γ∇ωε)·(γ∇φ)vεdx, (4.1)

where we make use of the following fact :

∇·(γTγ∇ωε)=0, ∀x∈Dε,k.

In addition, we can get the following result :

lim
ε→0

∑
k

∫
Dε,k

(γ∇ωε)·(γ∇φ)vεdx=0. (4.2)

In fact, by direct calculations, we have∫
Bε

|γ∇ωε|dx≤
C

r2−n
ε −ε2−n

∫
Bε\Brε

∞∑
j=1,j 6=n

dg(x,0)j−ndx

≤ C(n)

r2−n
ε −ε2−n

∫ ε

rε

∞∑
j=1

rj−1dr

≤C(n)O(εn)+C(n)
∞∑
j=1

O(εn+j),

≤C(n)O(εn),

and hence ∫
D

|γ∇ωε||γ∇φ|vεdx≤C
∫
D

|γ∇ωε|dx≤Cε,

where C depends only on n, a and b. Consequently, we have established (4.2). This,
together with (4.1), inspires us to only consider the following integral∫

∂Dε,k

(γ∇ωε)·(γ−→ν )vεφdSx
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=

(∫
∂Brε (xε,k)∩D

+

∫
∂D∩Bε,k

+

∫
∂Bε(xε,k)∩D

)
(γ∇ωε)·(γ−→ν )vεφdSx

=:E1+E2+E3. (4.3)

Noticing that ∫
∂Brε∩D

(γ∇ωε)·(γ−→ν )vεφdSx

≥
∫
∂Brε∩D

∑
i=1C

′
ir
i−n
ε

r2
ε (r

2−n
ε −ε2−n)

(γx)T (γx)vεφdSx

≥−C||vεφ||L
∞

r2−n
ε −ε2−n

∫
∂Brε∩D

+∞∑
i=1

ri−nε dSx

≥−Cε
n−1

1−rε
, (4.4)

where {C ′i}∞i=1 are bounded. Hence, we see that

lim
ε→0

∑
k

∫
∂Brε (xε,k)∩D

(γ∇ωε)·(γ−→ν )vεφdSx≥0.

In the following, we need to estimate E2 and E3. For the estimation of E2, the key
idea is to make a local flattening of the boundary ∂D because of ∂D∈C1,α. More
precisely, we have the following lemma.

Lemma 4.1. Let ωε be defined in (3.2). Then

lim
ε→0

∑
k

∫
∂D∩Bε,k

(
γ∇ωε

)
·
(
γ−→ν
)
vεφdSx=0.

Proof. Without loss of generality, we may suppose that xε,k is the origin. Since
∂D∈C1,α, then near the origin, ∂D can be given by

xn=ρ(x′),

where ρ is C1,α near the origin in Rn−1 and |ρ(x′)|≤C|x′|1+α for |x′| small enough.
Furthermore, there holds

D∩Bε⊂{xn>ρ(x′)} for ε small.
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Let ν(x′) be the outward unit normal vector on ∂D at (x′,ρ(x′)) near the origin.Then
ν∈Cα near the origin in Rn−1. Substituting by variables, we have∫

∂D∩(Bε\Brε )

(
γ∇ωε

)
·
(
γ−→ν
)
vεφdSx

=

∫
(Bε\Brε )

(
γ∇ωε(x′,ρ(x′))

)
·
(
γ−→ν (x′)

)
vεφ
√

1+|∇ρ(x′)|2dx′. (4.5)

Next, we split the term
(
γ∇ωε(x′,ρ(x′))

)
·
(
γ−→ν (x′)

)
into three parts :(

γ∇ωε(x′,ρ(x′))
)
·
(
γ−→ν (x′)

)
=
(
γ∇ωε(x′,0)

)
·
(
γ−→ν (0)

)
+
(
γ∇ωε(x′,ρ(x′))−γ∇ωε(x′,0)

)
·
(
γ−→ν (0)

)
+
(
γ∇ωε(x′,ρ(x′))

)
·
(
γ−→ν (x′)−γ−→ν (0)

)
=:A1+A2+A3. (4.6)

We note that A1 = 0 by the construction of ωε. Hence, we only need to focus on the
estimates of A2 and A3.

To facilitate the estimate of the term A2, we define

A2,1 :=
n−1∑
i=1

∣∣∣∂ωε
∂xi

(x′,ρ(x′))− ∂ωε
∂xi

(x′,0)
∣∣∣, (4.7a)

A2,2 :=
∣∣∣∂ωε
∂xn

(x′,ρ(x′))− ∂ωε
∂xn

(x′,0)
∣∣∣. (4.7b)

Then we have by direct computations that

A2,1 :=
n−1∑
i=1

∣∣∣∣∂ωε∂xi
(x′,ρ(x′))− ∂ωε

∂xi
(x′,0)

∣∣∣∣
≤
n−1∑
i=1

sup
0≤xn≤ρ(x′)

∣∣∣∣ ∂2ωε
∂xi∂xn

(x′,xn)ρ(x′)

∣∣∣∣
≤ C

r2−n
ε −ε2−n

n−1∑
i=1

sup
0≤xn≤ρ(x′)

∞∑
j=1

{
dg(x,0)j+1−n+(|xn|+|xi|)dg(x,0)j−1−n

+|xn||xi|dg(x,0)j−3−n
}
|ρ(x′)|

≤ C

r2−n
ε −ε2−n

n−1∑
i=1

sup
0≤xn≤ρ(x′)

{
|x′|1−n+M+(|xn|+|xi|)(|x′|−n−1+M)

+|xn||xi|(|x′|−3−n+M)

}
|ρ(x′)|

(
M=

1

1−(|x′|+|x′|1+α)

)
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≤ C(n)

r2−n
ε −ε2−n

{
|x′|1−n+M+(|x′|1+α+|x′|)(|x′|−n−1+M)

+|x′|2+α(|x′|−3−n+M)

}
|x′|1+α

≤ C(n)

r2−n
ε −ε2−n

{
|x′|α(1+|x′|+|x′|1+α+|x′|α+2)+|x′|α−n+2+|x′|α−n+1

+|x′|1+2α−n+|x′|2α−n
}
. (4.8)

Similarly, we can show that

A2,2 :=

∣∣∣∣∂ωε∂xn
(x′,ρ(x′))− ∂ωε

∂xn
(x′,0)

∣∣∣∣
≤ C

r2−n
ε −ε2−n

{
|x′|α(1+|x′|1+α+|x′|2α+2)

+|x′|α−n+2+|x′|1+2α−n+|x′|3α−n
}
. (4.9)

Then we have by combining the two estimates (4.8) and (4.9) that

|A2|≤
C

r2−n
ε −r2−n

{
|x′|α(1+|x′|+|x′|1+α+|x′|2α−n+|x′|α+2+|x′|2+2α)

+|x′|α−n+1+|x′|α−n+2+|x′|2α−n+1+|x′|3α−n
}
, (4.10)

where C depends only on n, a, b, and |C ′i|L∞(D), (i=1,2,···).
For the term A3, let us first recall that ∂D∈C1,α, then we will select ε sufficiently

small such that |∇ρ|≤1 for |x′|<ε, and∣∣γ(−→ν (x′)−−→ν (0)
)∣∣≤C|x′|α.

Hence

|A3|≤C|x′|α
∣∣γ∇ωε(x′,ρ(x′))

∣∣. (4.11)

In view of (4.6), (4.10) and (4.11), it concludes that∫
(Bε\Brε )

(
γ∇ωε(x′,ρ(x′))

)
·
(
γ−→ν (x′)

)
vεφ
√

1+|∇ρ(x′)|2dx′

≤2||φvε||L∞
∫

(Bε\Brε )

∣∣(γ∇ωε(x′,ρ(x′))
)
·
(
γ−→ν (x′)

)∣∣dx′
≤2||φvε||L∞

∫
(Bε\Brε )

∣∣γ∇ωε(x′,ρ(x′))−γ∇ωε(x′,0)
∣∣+C∣∣γ∇ωε(x′,ρ(x′))

∣∣|x′|αdx′
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≤2||φvε||L∞
∫

(Bε\Brε )

{
|x′|α(1+|x′|+|x′|1+α+|x′|α+2+|x′|2+2α)+|x′|α−n+1

+|x′|α−n+2+|x′|2α−n+|x′|2α−n+1+|x′|3α−n
}
dx′

≤||φvε||L∞
{
O(εα+2n−2)(1+ε)+O(ε2α+2n−1)(1+ε+εα+1)+O(εα+n−1)(1+ε)

+O(ε2α+n−2)(1+ε+εα)

}
≤||φvε||L∞O(ε2α+n−2), (4.12)

which, together with (4.5) and α∈(2−1,1), yields that

lim
ε→0

∑
k

∫
∂D∩Bε,k

(γ∇ωε)·(γ−→ν )vεφdSx=0.

Hence we complete the proof of Lemma 4.1.

The next lemma tells us the estimate of E3. It is worth noting that the con-
struction of the auxiliary function qε(x) plays an important role in its estimation.

Lemma 4.2. Suppose that ωε satisfies the definition of the above section. Then
there holds

lim
ε→0

∑
k

∫
∂Bε(xε,k)∩D

(γ∇ωε)·(γ−→ν )vεφdSx≥−
∫

Σ

φvµ(x)dSx,

with equality held if vε
∣∣
Tε

=0.

Proof. Suppose that ε is sufficiently small. By direct calculations, we have

(
γ∇ωε

)
·
(
γ−→ν
)

=

∑∞
i=1C̃iε

i−n

ε2(r2−n
ε −ε2−n)

(γx)T (γx)=

∑∞
i=1C̃iε

i−1

ε2(r̃2−n
ε −ε)

(γx)T (γx)

on ∂Bε, where rε= r̃εε
n−1
n−2 and {C̃i}∞i=1 are bounded.

Motivated by Cioranescu and Murant [6, 7], we consider the following auxiliary
function

qε(x) :=


∑∞

i=1C̃iε
i−1

2ε(r̃2−n
ε −ε)

(
d2
g(x,0)−ε2

)
, dg(x,0)≤ε,

0, dg(x,0)>ε,
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which gives that

(γ∇qε)·(γ−→ν )=(γ∇ωε)·(γ−→ν ) on ∂Bε, (4.13)

and

lim
ε→0

∫
D

|∇qε(x)|2dx=0. (4.14)

In fact, (4.13) is obvious. In the following, we need to show (4.14). In fact, direct
calculation yields that

∫
Bε

|∇qε(x)|2dx=

∫
Bε

(∑∞
i=1C̃iε

i−1

r̃2−n
ε −ε

)2
x2

ε2
dx

≤C(n)

(∑∞
i=1C̃iε

i−1

(r̃2−n
ε −ε)ε

)2∫ ε

0

rn+1dr

≤C(n)
(
∑∞

i=1C̃iε
i−1)2

(r̃2−n
ε −ε)2

εn

≤C(n)

(
1

(1−ε)(r̃2−n
ε −ε)

)2

εn(c1≤ r̃ε≤c2)

≤C(n)O(εn),

which verifies (4.14).
Integrating by parts, we see that∫

D

φvε∇·(γTγ∇qε)dx

=−
∫
D

(
γ∇(φvε)

)
·
(
γ∇qε(x)

)
dx+

∑
k

∫
∂(Bε(xε,k)∩D)

(
γ∇qε

)
·
(
γ−→ν
)
φvεdSx. (4.15)

Then by applying Hölder’s inequality to the first term of (4.15), we have∫
D

(
γ∇(φvε)

)
·
(
γ∇qε

)
dx≤C(n)

∣∣∣∣γ∇(φvε)
∣∣∣∣
L∞(D)

∫
D

|γ∇qε|2dx,

which means that (by (4.14))

lim
ε→0

∫
D

(
γ∇(φvε)

)
·
(
γ∇qε(x)

)
dx=0.
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Therefore it suffices for us to only study the second term of (4.15),∑
k

∫
∂(Bε(xε,k)∩D)

(
γ∇qε

)
·
(
γ−→ν
)
φvεdSx

=
∑
k

(∫
∂Bε(xε,k)∩D

+

∫
∂D∩Bε(xε,k)

)(
γ∇qε)·(γ−→ν

)
φvεdSx

=:E3,1+E3,2. (4.16)

For the term E3,2, we can use a similar argument to that for Lemma 4.1 to obtain∫
∂D∩Bε

(γ∇qε)·(γ−→ν )φvεdSx

≤C||φvε||L∞
∫
∂D∩Bε

∑∞
i=1C̃iε

i−1

(r̃2−n
ε −ε)ε

|x·−→ν |dSx

≤C||φvε||L∞
∫
∂D∩Bε

∑∞
i=1C̃iε

i−1

(r̃2−n
ε −ε)ε

|x′|1+αdSx

≤C||φvε||L∞
∫
Bε

∑∞
i=1C̃iε

i−1

(r̃2−n
ε −ε)ε

|x′|1+αdx′

≤C||φvε||L∞
∑∞

i=1C̃iε
i−1

(r̃2−n
ε −ε)ε

∫ ε

0

rn+α−1dr

≤C||φvε||L∞
∑∞

i=1C̃iε
i−1

r̃2−n
ε −ε

εn+α−1

≤ C

(r̃2−n
ε −ε)(1−ε)

εn+α−1 (c1≤ r̃ε≤c2)

=CO(εn+α−1), (4.17)

where C is a positive constant depending only on n, a,b, ||φvε||L∞(D) and ||C ′i||L∞(D).
Thus

lim
ε→0

∑
k

∫
∂D∩Bε(xε,k)

(γ∇qε)·(γ−→ν )φvεdSx=0.

For the term E3,1, returning now to (4.15), we need to compute∫
D∩Bε

φvε∇·(γTγ∇qε)dx

=

∫
D∩Bε

∑∞
i=1C̃iε

i−1

(r̃2−n
ε −ε)ε

∇·(γTγx)φvεdx
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=−
∫
D

(
∑∞

i=1C̃iε
i−1)r̃n−2

ε

εr̃n−2
ε −1

∇·(γTγx)
1

ε
χBε(x)φvεdx. (4.18)

By (4.13), (4.15), (4.18) and the definition of µε(x), we obtain

lim
ε→0

∑
k

∫
∂Bε(xε,k)∩D

(γ∇ωε)·(γ−→ν )φvεdSx

=lim
ε→0

∑
k

∫
∂Bε(xε,k)∩D

(γ∇qε)·(γ−→ν )φvεdSx

≥−lim
ε→0

∫
D

φvεµε(x)dx. (4.19)

From our assumption, we have

lim
ε→0

∫
D

φvεµε(x)dx=

∫
Σ

φvµ(x)dSx.

Therefore

lim
ε→0

∑
k

∫
∂Bε(xε,k)∩D

(γ∇ωε)·(γ−→ν )φvεdSx≥−
∫

Σ

φvµ(x)dSx.

This finishes the proof of Lemma 4.2.

Acknowledgements

The work of J. Li was partially supported by the NSF of China No. 11971221,
Guangdong NSF Major Fund No. 2021ZDZX1001, the Shenzhen Sci-Tech Fund
Nos. RCJC20200714114556020, JCYJ20200109115422828, JCYJ20190809150413261,
and Guangdong Provincial Key Laboratory of Computational Science and Material
Design No. 2019B030301001. The work of H. Liu was supported by the startup fund
from City University of Hong Kong and the Hong Kong RGC General Research Fund
(projects Nos. 12301420, 12302919 and 12301218). The work of L. Tang was partially
supported by NNSFC grants of China (No. 11831009) and the Fundamental Research
Funds for the Central Universities (No. CCNU19TS032). The work of J. Wang was
partially supported by the Shenzhen Sci-Tech Fund No. JCYJ20180307151603959.

References

[1] N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear
media, J. Math. Pure Appl., 81 (2002), pp. 439–451.



J. Li et al. / Ann. Appl. Math., 38 (2022), pp. 240-260 259

[2] E. Bl̊asten and H. Liu, Recovering piecewise constant refractive indices by a single
far-field pattern, Inverse Problems, 36(8) (2020), 085005.

[3] L. A. Caffarelli and A. Mellet, Random homogenization of an obstacle problems,
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