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Abstract. In this paper, an initial boundary value problem of the space-time fractional
diffusion equation is studied. Both temporal and spatial directions for this equation
are discreted by the Galerkin spectral methods. And then based on the discretization
scheme, reliable a posteriori error estimates for the spectral approximation are derived.
Some numerical examples are presented to verify the validity and applicability of the
derived a posteriori error estimator.
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1 Introduction

Nowadays, fractional derivatives have become an important tool to describe many dif-
ferent types of complex mechanical and physical behaviors. Moreover, fractional cal-
culus theory has been successfully applied in many fields such as anomalous diffusion,
viscoelastic materials, geophysics and biomedical engineering. Generally speaking, frac-
tional calculus operator is non-local, so the numerical methods which are very effective
for calculating integral order differential equations may be completely invalid for frac-
tional differential equations (FDEs). Therefore, the numerical solution of fractional dif-
ferential equations has attracted more and more attention of mathematical workers [6,12,
20].
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During the last decades, there appears a growing interest in developing numeri-
cal methods for solving FDEs. And the early methods mainly include finite difference
method and finite element method. For example, Deng [5] discussed a finite element
method for the fractional Fokker-Planck equation and a convergence rate O(k2−α+hµ)
was obtained. Wang and Yang [22] studied finite element methods for variable-coefficient
conservative fractional elliptic differential equations and showed that the weak formu-
lation is well posed. Wang [21] investigated fast alternating-direction finite difference
methods for three-dimensional space-fractional diffusion equations, which effectively re-
duced the computation and storage requirements of each iteration. Nochetto, Otárola
and Salgado [19] studied the finite element approximation for parabolic equations with
fractional diffusion and the stability and error estimates of the scheme were given. Jin
et al. [10] analyzed Galerkin finite element methods for inhomogeneous fractional diffu-
sion equation and the L2- and H

α
2 -norm error estimates were derived for the semidiscrete

scheme and L2-norm error estimates were obtained for the fully discrete schemes. Zeng
et al. [28] proposed a numerical method based on a fractional linear multistep methods
in time and the FEM in space for time-fractional subdiffusion equation with Dirichlet
boundary conditions. Bu et al. [1] investigated finite difference/finite element method
for two-dimensional space and time fractional Bloch-Torrey equations, the stability and
convergence of the semidiscrete scheme and fully discrete scheme were proved. Hou,
Tang and Yang [8] considered the fully discretized Crank–Nicolson scheme for fractional-
in-space Allen-Cahn equations and showed that the numerical solutions satisfy discrete
maximum principle under reasonable time step constraint. Recently, there are many
works for the fractional differential equations [11,26]. For example, Yue et al. [27] consid-
ered a fully finite element adaptive adaptive algebraic multigrid (AMG) method for time-
space Caputo-Riesz fractional diffusion equations, which have the well robustness and
high efficiency compared with the classical AMG method. Xing and Wen [23] considered
a class of two-dimensional Riesz space-fractional diffusion equations by the alternating
direction implicit Crank-Nicholson (ADI-CN) method, which reduces the computational
complexity and is unconditionally stable. Gunzburger and Wang [7] studied the time
fractional partial differential equation by the Crank-Nicolson method, which achieves
second-order convergence in time under the regularity assumptions of the source and
initial data.

Fractional differential equations have non-local operators, which will inevitably lead
to the overall dependence of numerical solutions, i.e., the full algebraic system. So the
advantage of sparsity for the low-order method over the high-order method cannot be
reflected. As a global high-precision algorithm, spectral methods have apparent superi-
ority and become the preferred algorithm to solve this kind of equation. Several spectral
methods for FDEs have been proposed recently, for instance Lin and Xu [16] proposed
a numerical method based on a finite difference scheme in time and Legendre spectral
method in space for time fractional diffusion equation. They also proposed a space-time
spectral method for the time fractional diffusion equation and derived a priori error es-
timate [13]. Chen, Shen and Wang [4] considered the General Jacobi functions Petrov-


