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Abstract. This paper is concerned with two types of two-grid stabilized finite ele-
ment methods (FEMs) based on Newton iteration for the steady-state nature convec-
tion problem. The first method needs to solve one small nonlinear natural convection
system on the coarse mesh with mesh width H, and then to solve one large linearized
natural convection system on the fine mesh with mesh width h=O(H2) based on New-
ton iteration. The other method needs to solve one small nonlinear natural convection
system on the same coarse mesh, and then to solve two large linearized systems on
the fine mesh with mesh width h=O(H

7−ε
2 ) based on Newton iteration which have

the same stiffness matrix with only different right-hand side. In both methods, the
stabilization terms are defined via two local Gauss integrations at element level which
has no need to introduce additional variables comparing with the standard variational
multiscale stabilized FEMs. The stability estimates and the convergence analysis for
both methods are derived strictly. Ample numerical results are presented to confirm
the theoretical predictions and demonstrate the efficiency of the new methods.
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1 Introduction

In this paper, we consider the numerical approximation of the steady-state incompress-
ible nature convection problem, whose dimensionless form including solid media is given
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−Pr∆u+(u·∇)u+∇p=PrRaTe+b1 in Ω f , (1.1a)

∇·u=0 in Ω f , (1.1b)

u=0 on ∂Ω f , u≡0 in Ω−Ω f =Ωs, (1.1c)

−∇·(k∇T)+(u·∇)T=b2 in Ω, (1.1d)

T=0 on ΓT,
∂T
∂n

=0 on ΓB, (1.1e)

where Ω is an open bounded domain in Rd (d=2,3), the unknowns are the velocity field
u, the pressure p and the temperature T, e is a unit vector in the direction of gravitational
acceleration, b1 and b2 are given functions, n is the outward unit normal to Ω. Here Ωs,
Ω f are disjoint polygonal or polyhedral domains, and ΓT =∂Ω\ΓB, where ΓB is a regular
open subset of ∂Ω. The positive parameters Pr, Ra and k denote the Prandtl number, the
Rayleigh number and the thermal conductivity, respectively. Moreover, k= k f in Ω f and
k=ks in Ωs, where k f and ks are positive constants which denote the thermal conductivity
for the different media. The system (1.1) uses Boussinesq approximation as governing
equations.

Natural convection problem can describe many phenomena in industrial application,
such as room ventilation, katabatic winds, solar collectors, dense gas dispersion, cooling
of electronic equipments and nuclear reactors, double glass window design, etc. Even, it
can explain some rules of the ocean and atmospheric dynamics. Therefore, this problem
is very valuable in our real life and it is of practical interest to design efficient numerical
simulation methods for natural convection problem. There are many works devoted to
the development of the efficient numerical methods for natural convection problem, we
can see the famous benchmark solutions of de Vahl Davis [9], which used second-order
central approximations to solve natural convection problem in a square cavity. A semi-
implicit form of the characteristic-based split scheme for natural convection problem was
developed by Massarotti [30]. An explicit finite element algorithm for natural convection
problem was employed by Manzari [29]. Wan et al. [36] used discrete singular convolu-
tion method for the solution of the natural convection problem. Boland and Layton [3, 4]
presented finite element method (FEM) for solving stationary natural convection prob-
lem and established the theoretical framework of FEM for solving it.

As we know, if we solve natural convection problem by the standard Galerkin method,
it may exhibit global spurious oscillations [11, 31] and yield inaccurate approximation.
One reason is the dominance of the convection term. There are numerous works devoted
to the development of efficient schemes to deal with such problem. Among them, we list
some recently developed stabilized methods as follows. The variational multiscale (VMS)
method is based on the decomposition of the flow scales. In a type of VMS method, the
flow are decomposed into the large scales and small scales, and the former are defined by
projection into appropriate subspaces. For more details, we can see [12, 16, 17, 19, 20] and
the references therein. Li and He [26] first proposed a stabilized finite element method


