
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 12, No. 5, pp. 1113-1136

DOI: 10.4208/aamm.OA-2019-0033
October 2020

The Modified Localized Method of Approximated
Particular Solutions for Linear and Nonlinear
Convection-Diffusion-Reaction PDEs

Wen Li1,2, Kalani Rubasinghe2, Guangming Yao2,3,∗ and L. H. Kuo4

1 College of Big Data Science, Taiyuan University of Technology, China
2 Department of Mathematics, Clarkson University, USA
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Abstract. In this paper, a kernel based method, the modified localized method of ap-
proximated particular solutions (MLMAPS) [16, 23] is utilized to solve unsteady-state
linear and nonlinear diffusion-reaction PDEs with or without convections. The time-
space and spatial space are discretized by the higher-order Houbolt method with var-
ious time step sizes and the MLMAPS, respectively. The local truncation error associ-
ated with the time discretization is O(h4), where h is the largest time step size used.
The spatial domain is then treated by a special kernel, the integrated polyharmonic
splines kernels together with low-order polynomial basis. Typical computational al-
gorithms require a trade off between accuracy and rate of convergency. However, the
experimental analysis has shown high accuracy and fast convergence of the proposed
method.
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1 Introduction

The domain type meshfree methods utilizing radial basis functions, such as Kansa’s
method [11, 12] and the method of approximated particular solutions (MAPS) [3, 4], are
classified as global meshfree methods because the methods result in the creation of a
dense linear system. Yao et al. further localized the MAPS into the localized MAPS
(LMPAS) [21] which allows the creation of a sparse system. This is especially useful for
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solving large-scale problems. The LMAPS utilizes the collocation scheme on overlap-
ping local domains with integrated radial basis functions (RBFs), such as multiquadrics,
inverse multiquadrics, and Matern. This technique drastically reduces the storage size
of the collocation matrix. This improved the computational efficiency of the method for
solving large-scale partial differential equations (PDEs). This allows the LMAPS to com-
pete with the traditional numerical methods such as the finite element method (FEM)
for large-scale problems. Since then, the LMAPS has been applied to various kinds of
differential equations, such as the biharmonic equation [15], near-singular PDEs [24], the
unsteady Burgers’ equations [17, 27], convection-diffusion equations [2], 3D nonlinear
Schrödinger equations [18], and wave equations [10], as well as unsteady Navier-Stokes
problem [7, 26].

A modified LMAPS (MLMAPS) presented in [22] shows a significant improvement
in terms of accuracy by using integrated polyharmonic splines in radial space together
with the polynomial basis for linear and nonlinear elliptic PDEs in 2D and 3D. Since
then, the method has been applied to time-dependent PDEs [16]. On the other hand, the
Houbolt method in [9, 19, 25] is a high-order accurate time discretization scheme. Note
that MLMAPS can be classified as a kernel-based method, which has similar ideas as the
generalized finite difference method or radial basis function- finite difference method.
The main difference is that MLMAPS uses commonly used kernels in the integrated
forms, in addition to low-order polynomial basis. This is a combination of basis func-
tions that amazingly preserve the high accuracy of the polynomial basis and flexibility of
the kernel based methods.

In this paper, MLMAPS is coupled with the Houbolt method to solve linear or non-
linear diffusion-reaction PDEs with or without convection terms:

∂u
∂t

=Du+ f (x,t), x∈Ω⊂Rd, (1.1)

with the boundary condition Bu(x,t)=g(x,t), x∈∂Ω, and the initial condition u(x,0)=u0,
x∈Ω∪∂Ω, whereD is linear or nonlinear diffusion-convection differential operator, f is a
reaction function, and B is a linear or nonlinear boundary differential operator, functions
f , g and u0 are known, with physical domain Ω in Rd. We will combine the implicit Euler
method, the Houbolt method, and MLMAPS to solve this type of PDEs.

The rest of the paper is organized as follows: In Section 2, the first few time-steps are
discretized by the traditional implicit time-stepping method with small evenly-spaced
time-step h0. This allows the Houbolt method to be used in the following time-steps after
first three steps, the time step will jump from h0 to a relatively larger time-step h. After
transitioning to h, the third order Houbolt method will be used for the evenly-spaced
time discretization with time-step h. The error analysis associated with time discretiza-
tion is presented at the end of this section. The time discretization transforms the given
time-dependent PDE to a series of elliptical differential equations. Therefore, in Section 3,
the spatial discretization using MLMAPS with integrated polyharmonic splines together
with polynomial basis are introduced. Section 4 illustrates the performance of the nu-


