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Abstract. In this paper, we construct a compact difference scheme for the time-
fractional partial integro-differential equation. This model involves two nonlocal
terms in time, i.e., a Caputo time-fractional derivative and an integral term with mem-
ory. We obtain the stability and the discrete L2 convergence with second-order in time
and fourth-order in space by the energy method. Two numerical examples are pro-
vided to confirm the theoretical results.
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1 Introduction

Recently, fractional partial differential equations (FPDEs) have been widely used to de-
scribe phenomena in many scientific fields, such as control theory [18], universal re-
sponse [17], financial mathematics, viscoelastic materials [1, 9, 21]. The analytical solu-
tions of most FPDEs cannot be obtained, therefore many researchers [10, 12, 14, 15, 22–24]
have concentrated on the numerical approaches for solving this kind of equation.

In this paper, we consider a compact difference scheme for the time-fractional partial
integro-differential equation

C
0 Dα

t u(x,t)=
∫ t

0
(t−s)β−1uxx(x,s)ds+ f (x,t), x∈ (0,L), t∈ (0,T], (1.1)
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with the boundary conditions

u(0,t)=u(L,t)=0, t∈ (0,T], (1.2)

and the initial condition
u(x,0)=φ(x), x∈ [0,L], (1.3)

where α,β∈ (0,1), L, T are positive constants, f (x,t) and φ(x) are given functions, and
C
0 Dα

t denotes the Caputo time-fractional derivative

C
0 Dα

t u(x,t)=
1

Γ(1−α)

∫ t

0

∂u(x,s)
∂s

ds
(t−s)α

.

Here, Γ(·) is the Gamma function.
Equation similar to (1.1) can be obtained from the standard partial integro-differential

equation, i.e.,

ut(x,t)=
∫ t

0
(t−s)β−1uxx(x,s)ds+ f (x,t), t>0, (1.4)

by replacing ut(x,t) by C
0 Dα

t u(x,t). We note that when α tends to 1, C
0 Dα

t u(x,t) converges
to ut(x,t). Having the Caputo derivative in the generalized equation (1.1) can improve
the modeling accuracy for describing physical phenomena involving viscoelastic forces.
This equation often occurs in applications, such as linear viscoelastic mechanics [3, 20],
heat conduction in materials with memory [6].

Different numerical methods for solving (1.4) have been developed. López-
Marcos [12] investigated a backward-Euler scheme. Kim and Choi [8] considered spectral
methods. Yan and Fairweather [26] presented orthogonal spline methods. Mclean and
Thomée [15] derived the finite element method. Tang [23] analyzed a Crank-Nicolson
scheme. Luo et al. [13] gave a compact difference scheme. Second-order backward differ-
entiation formula methods were constructed in [2, 25] and alternating direction implicit
schemes for high dimensional problems were provided in [7, 11, 19]. Replacing first term
in (1.4) by Riemann-Liouville derivative and fixing β= 1

2 , a compact difference scheme
with first-order in time was considered in [16].

So far, a high order numerical scheme for (1.1)-(1.3) has not been given. The main
purpose of this work is to present a compact difference scheme with second-order in
time and fourth-order in space for the problem (1.1)-(1.3). The L1-2 formula [5, 14] is
used to discretize the Caputo time-fractional derivative. And we utilize a second-order
method suggested by Diethelm et al. [4] to approximate the integral term. For the spatial
directional derivative, a fourth-order compact difference method is employed.

The remainder of this paper is organized as follows. In Section 2, we propose a nu-
merical scheme for the problem (1.1)-(1.3) and discuss the unique solvability. The stability
and convergence are analyzed in Section 3. Two numerical examples are provided in Sec-
tion 4 to evaluate the performance of the compact difference scheme. Finally, a conclusion
is given for this work in Section 5.


