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Abstract. A novel upwind technique for the localized method of approximate partic-
ular solutions (LMAPS) is proposed to solve the convection-diffusion equations. An
upwind approximation to the convective terms is implemented by choosing upwind
interpolation stencils while the central interpolation stencils are used for the diffusive
terms. The proposed upwind LMAPS scheme is also been compared with conven-
tional LMAPS without upwind technique, to demonstrate its superiority in generating
high accurate solutions than the latter. Numerical results show that the proposed up-
wind LMAPS has high accuracy and efficiency for a variety of convection-diffusion
equations.
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1 Introduction

The meshless methods based on radial basis functions (RBFs) such as radial basis func-
tion collocation method (RBFCM) [1], differential quadrature (DQ) method [2, 3] and
the method of approximate particular solutions (MAPS) [4–6] are successfully applied to
solve various partial differential equations (PDEs) including convection-diffusion prob-
lems [7], Burgers’ equations [8], Navier-Stokes equations [9] and turbulent flow [10], etc.
It is worth noting that the meshless methods are used in a global manner in classic collo-
cation technique, so the resultant coefficient matrices may be subjected to singular, dense
and even ill-conditioned problems which restricts our abilities to solve large-scale prob-
lems. Consequently a new class of effective constructions were proposed to overcome
these shortcomings. Among these new techniques, local scheme based on local sup-
port interpolations appears to be more efficient in handling a large number of collocation
points and less sensitive to changes of shape parameter [8, 9].
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The convection-diffusion equations is a kind of mathematical model widely used in
fluid dynamics and thermodynamics. Due to its physical significance, many researchers
pay close attention to it [11–14]. However, the most common RBFs interpolation formu-
lation to solve convection dominated problems uses the central type of stencils in the
local support domain, without considering the direction and the magnitude of the con-
vective flow. The convection term causes spurious oscillations around the discontinuous
solutions that span several grids in finite time steps when using classical numerical tech-
niques based on central interpolation stencils. The development of efficient and accurate
RBFs meshless methods for the simulation of convection dominated flows is therefore a
challenged research topic. The upwind schemes are often regarded as one of the most
efficient methods. The purpose of this paper is to formulate an upwind LMAPS scheme
and to extend it to solve convection-diffusion problems.

The paper is organized as follows. The governing equations of the problems are given
in Section 2. In Section 3, the introduction to the LMAPS as well as the upwind formula-
tion of the LMAPS is presented. The numerical results are compared with those obtained
by other methods or analytical solutions in Section 4. Finally, conclusions are drawn in
Section 5.

2 Governing equations

Without loss of generality, we consider the following time-dependent convection-diffusion
equation

∂u
∂t
−ε∆u(x,t)+β·∇u(x,t)+γu(x,t)= f (x,t), (x,t)∈Ω×(0,T], (2.1a)

with initial condition

u(x,0)=u0(x), x∈Ω, (2.1b)

and boundary condition

u(x,t)= g(x,t), (x,t)∈∂Ω×(0,T], (2.1c)

where ε>0 is the diffusion coefficient that corresponds to the Peclet number, β is a known
convection velocity, γ is reaction coefficient and f is a known source term. xεΩ⊂<d,
d = {1,2,3}, is a bounded domain with the boundary ∂Ω. The convective term plays a
dominant role in convection-diffusion equation which behaves as hyperbolic type of par-
tial differential equation as the diffusion coefficient ε tends to zero. As a result, traditional
meshless methods can not produce monotonic solutions and suffer from the spurious nu-
merical oscillations around the discontinuous solutions.


