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Abstract. In this paper, we develop the superconvergence analysis of two-grid algo-
rithm by Crank-Nicolson finite element discrete scheme with the lowest Nédélec el-
ement for nonlinear power-law conductivity in Maxwell’s problems. Our main con-
tribution will have two parts. On the one hand, in order to overcome the difficulty
of misconvergence of classical two-grid method by the lowest Nédélec element, we
employ the Newton-type Taylor expansion at the superconvergent solutions for the
nonlinear terms on coarse mesh, which is different from the numerical solution on the
coarse mesh classically. On the other hand, we push the two-grid solution to high
accuracy by the postprocessing interpolation technique. Such a design can improve
the computational accuracy in space and decrease time consumption simultaneously.
Based on this design, we can obtain the convergent rate O(∆t2+h2+H

5
2 ) in three-

dimension space, which means that the space mesh size satisfies h=O(H
5
4 ). We also

present two examples to verify our theorem.
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1 Introduction

Two-grid method is a numerical approximation based on two-grid of different sizes in
order to improve computational efficiency [1, 2, 4, 28, 29]. Generally, it is used to solve
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the problems with non-symmetry, indefiniteness, large wave number or nonlinearity be-
having, etc. The basic idea is to calculate the source problem on the coarse mesh with
grid size H and calculate linearized problem on the fine mesh with grid mesh h<H. The
advantages of this approach over the general implicit format is that the solution obtained
on the coarse mesh is taken as the prediction of that on the fine mesh, and then the nu-
merical solution is obtained through the corresponding iterative algorithm, which can
save the CPU times and improves workloads.

In numerical simulation of electromagnetic system by finite element methods, we em-
ploy Nèdèlec elements or edge elements to approach H(curl,Ω). In order to decrease the
computational cost, two-grid method is one of choices. Unfortunately, Zhong’s work
cites a counter-example [3] in Maxwell’s equation. The natural reason is that the approx-
imation properties of Nédélec elements or edge elements are not as good as that of nodal
elements in the L2−norm. Therefore, few work can be found after that of Zhong’s work
in 2013. In 2018, the authors take the two-level or two-grid method as the postprocess-
ing techniques to simulate Navier-Stokes equations [4]. In fact, the postprocessing with
superconvergence has been proposed by Lin’s group from 1990s [5–10,12–15], where the
authors construct higher postprocessing operators based on lower numerical solutions
by finite element methods to improve the convergent order rate. In this paper, we use
postprocessing technique with superconvergence to modify two-grid algorithm for elec-
tromagnetic system in order to ensure matched error estimate between coarse mesh and
fine mesh for the first type Nédélec elements [16].

We consider nonlinear power-law conductivity in Maxwell’s problems,

ε
∂E
∂t
−∇×H+J(E)=F in Ω×(0,T], (1.1a)

µ
∂H
∂t

+∇×E=0 in Ω×(0,T], (1.1b)

n×E=0 in ∂Ω×(0,T], (1.1c)
E(0,x)=E0(x), H(0,x)=H0(x) in Ω, (1.1d)

where Ω is a bounded polyhedral domain in R3 with a sufficiently smooth boundary
∂Ω. E, H denote electric and magnetic field respectively, n is outward unit normal vec-
tor. ε and µ are the electric permittivity and the magnetic permeability of the medium,
respectively. We also assume that ε and µ are constants for convenience.

In [24], Yin proved existence of the weak solution for a nonlinear function J(E) =
σ(x,|E|)E, with σ(x,|E|) is a monotone function. This domain is occupied by a non-
linear conducting material with electric conductivity σ(x,|E|), which is assumed to be
a monotone function of the form |E|α−1, with α > 0 [17, 18]. For simplification, we set
J(E)= |E|α−1E.

The system arises in some physical application programs, for example, constitutive
law for type-II superconductors [19,20] and molding of the nonlinear conductivity of the
charge-density wave state of NbSe3 [21], microwave heating [22], and special applica-
tion for electric conductivity switches on eddy current [23]. The numerical analysis of


