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Abstract. This paper deals with a two-level factored Crank-Nicolson method in an
approximate solution of two-dimensional evolutionary advection-diffusion equation
with time dependent dispersion coefficients and sink/source terms subjects to appro-
priate initial and boundary conditions. The procedure consists to reducing problems
in many space variables into a sequence of one-dimensional subproblems and then
find the solution of tridiagonal linear systems of equations. This considerably reduces
the computational cost of the algorithm. Furthermore, the proposed approach is fast
and efficient: unconditionally stable, temporal second order accurate and fourth order
convergent in space and it improves a large class of numerical schemes widely studied
in the literature for the considered problem. The stability of the new method is deeply
analyzed using the L∞(t0,Tf ;L2)-norm whereas the convergence rate of the scheme is
numerically obtained in the L2-norm. A broad range of numerical experiments are
presented and critically discussed.
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1 Introduction and motivation

The advection-diffusion-reaction (ADR) equation still attracts research interests for its rel-
evance to broad range of practical applications in environmental fluid mechanic, biology,
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chemistry and applied mathematics among other fields. This model is usually solved in
the literature under the assumption that the dispersion coefficients are time and space
independent. Some laboratory scale experiments suggest that in porous media transport
problems, the dispersive parameter may be time-dependent [2, 3]. The factors that can
affect this transport of pollutants include the solute properties, fluid velocity field within
the subsurface and microgeometry such as the shape, size and location of the solid part
of the medium or the layout of the voids. The transport equation often models flow in
porous media, thermal pollution in river systems, dispersion of dissolved salts in ground-
water, water transfer in soils, dispersion of tracers in subsurface, the spread of pollutants
in rivers and streams, dispersion of dissolved material estuaries and costal seas, the ab-
sorbtion of chemical into the beds, contaminant dispersion in shallow lakes, forced cool-
ing by fluids of solid material such as windings into turbo generators and long-range
transport of solutes in the atmosphere [4, 9, 12, 34, 37, 38, 42]. This note deals with the
two-dimensional unsteady transport equation with a first-order source/sink terms and
time dependent dispersion coefficients describes by the following initial-boundary value
problem
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with initial condition
c(x,y,t0)= f (x,y), (x,y)∈Ω, (1.2)

and boundary condition

c(x,y,t)= g(x,y,t), (x,y)∈∂Ω, t∈ (t0,Tf ], (1.3)

where R > 0 is the retardation coefficient, ũ = ũ(x,y,t) and ṽ = ṽ(x,y,t) are longitudi-
nal and lateral velocities, respectively, D̃l = D̃l(t) and D̃τ = D̃τ(t) denote longitudinal
and transversal dispersion coefficients, respectively, c(x,y,t) is the solute concentration,
q̃= q̃(x,y,t) and µ=µ(x,y,t) represent the mass injection (or zero-order reaction rate coef-
ficient) and first-order reaction rate, respectively. As defined in [2,39] we suppose that the
functions D̃l(t), D̃τ(t), ũ(x,y,t), ṽ(x,y,t) and µ(x,y,t) are nonnegative and time variable
increasing. t0 is the initial time and Tf denotes the finite time. f and g are called initial
and boundary conditions, respectively, Ω = (a1,b1)×(a2,b2) and ∂Ω is the boundary of
Ω. We assume that the initial and boundary conditions f and g, respectively, are regular
enough so that the system of Eqs. (1.1)-(1.3), possesses a smooth solution.

In the last decades, many authors have applied various techniques in a search of
analytic solutions of the nonstationary advection-diffusion equation with variable coef-
ficients under suitable assumptions on the initial and boundary conditions satisfied by
the unknown function [18, 39]. For problems which have not been covered by exact so-
lutions, a broad range of numerical models have been deeply studied such as, explicit
finite difference formulations, implicit finite difference techniques, implicit-explicit ap-
proaches, finite element and finite volume methods, cubic trigonometric B-splines pro-
cedures. We refer the readers to [5, 10, 13, 16, 21, 22, 24, 26, 33]. A reliable numerical


