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Abstract. We consider Anderson acceleration (AA) applied to two nonlinear solvers
for the stationary Gross-Pitaevskii equation: a Picard type nonlinear iterative solver
and a normalized gradient flow method. We formulate the solvers as fixed point prob-
lems and show that they both fit into the recently developed AA analysis framework.
This allows us to prove that both methods’ linear convergence rates are improved by
a factor (less than one) from the gain of the AA optimization problem at each step.
Numerical tests for finding ground state solutions in 1D and 2D show that AA signifi-
cantly improves convergence behavior in both solvers, and additionally some compar-
isons between the solvers are drawn. A local convergence analysis for both methods
are also provided.
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1 Introduction

We consider numerical solvers for the following nonlinear eigenvalue problem,

WP(X)=—%A¢(x)+V(X)<P(X)+ﬁ|¢(x)\24’(96), x€Q, (1.1a)
$(x) =0, x€aQ, (1.1b)
/Q p(x) | dx=1, (1.10)

where V is a given trapping potential of the form
1
V(x) =5 (rixd++7ix)

*Corresponding author.
Emails: dforbes@clemson.edu (D. Forbes), rebholz@clemson.edu (L. G. Rebholz), fxue@clemson.edu (F. Xue)

http:/ /www.global-sci.org/aamm 1096 (©2021 Global Science Press



D. Forbes, L. G. Rebholz and F. Xue / Adv. Appl. Math. Mech., 13 (2021), pp. 1096-1125 1097

with 7; >0, Vi, real parameter 8, with ¢ being the unknown and the eigenvalue y can be
calculated as

— 1 2 2 4
= [ (3170 +VIgR+ plgl*) . 12

This system describes stationary solutions of the nonlinear Schrodinger (NLS) equa-
tion, which is also known as the the non-rotational Gross-Pitaevskii equation (GPE) in
the context of Bose-Einstein condensates (BEC) [7, 25, 27]; in the GPE setting ¢ repre-
sents the macroscopic wave function of the condensate. The parameter § being posi-
tive/negative represents defocusing/focusing in NLS, and attraction/repulsion of the
condensate atoms in GPE. Following [7,9], we will assume > 0 for simplicity, although
a more technical analysis would allow for our results to hold with p taking small nega-
tive values. Herein we assume a solution ¢ € H}(Q) exists to (1.1a)-(1.1c) that is locally
unique; see [9] for more on this assumption and conditions for its validity.
Solutions of (1.1a)-(1.1c) represent local minima of the Gross-Pitaevskii energy

1
Ex()= [ (3170R+vigP+Elolt) i,

and are used to numerically create initial conditions for real time dynamics of BEC, and
to consider experimentally observed physical features through direct investigation [36].
Solutions to (1.1a)-(1.1c) that globally minimize energy are called ground state solutions,
and it is stated in 2004 in [7] that "One of the fundamental problems in numerical simu-
lation of BEC lies in computing the ground state solution”. Existing methods include the
normalized gradient flow (or gradient flow with discrete normalization) [3,6,7], which
is most well-known, optimization methods such as steepest descent (without precon-
ditioning) [36], preconditioned steepest descent (PSD, which is also effective in related
problems [11, 14-16, 23]) and conjugate gradient (PCG) [4], and regularized Newton’s
method [33], as well as specialized non-optimization methods such as nonlinear inverse
iterations [20], self-consistent field iteration [5], and implicit algorithms based on inex-
act Newton’s method [21]. While normalized gradient flow methods have been widely
used in the literature to find solutions of (1.1a)-(1.1c), improving the convergence and
robustness of these methods remains an important problem and is the purpose of this
paper.

We consider herein Anderson acceleration (AA) applied to two nonlinear solvers for
(1.1a)-(1.1c). AA was originally developed in 1965 by D.G Anderson [2] as an extrapola-
tion technique which forms the next iterate in a nonlinear fixed point iteration from an (in
a sense) optimal linear combination of previous iterates. AA has increased in popularity
since the work of [37], which showed how to implement it efficiently as a post-processor
for a fixed point iteration and that it could be used successfully on a variety of application
problems. Theoretical justification for how AA works was proved in [12], building on the
theory from [13,24, 34], and then sharpened and generalized to the case of noncontrac-
tive operators in [30]. AA has been used in a wide variety of applications including e.g.,
computing nearest correlation matrices in [19], geometry optimization [26], electronic



