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Abstract. This paper mainly considers the optimal convergence analysis of the θ–
Maruyama method for stochastic Volterra integro-differential equations (SVIDEs)
driven by Riemann–Liouville fractional Brownian motion under the global Lipschitz
and linear growth conditions. Firstly, based on the contraction mapping principle, we
prove the well-posedness of the analytical solutions of the SVIDEs. Secondly, we show
that the θ–Maruyama method for the SVIDEs can achieve strong first-order conver-
gence. In particular, when the θ–Maruyama method degenerates to the explicit Euler–
Maruyama method, our result improves the conclusion that the convergence rate is
H+ 1

2 , H∈(0, 1
2 ) by Yang et al., J. Comput. Appl. Math., 383 (2021), 113156. Finally, the

numerical experiment verifies our theoretical results.
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1 Introduction

Volterra integro–differential equations play an important role in biology, physics and en-
gineering [1–4] and other aspects, especially in the study of heat conduction [3]. With the
continuous development of science and technology [5–9], researchers have put forward
many questions about Volterra integro-differential equations from practical problems. In
1966, Barnes and Allan [10] gave a simple definition of fractional Brownian motion based
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on the Riemann–Liouville integral, then the fractional Brownian motion gradually at-
tracted much attention. The fractional Brownian motion of the Riemann–Liouville type
was written by

BH(t)=
1

Γ(H+ 1
2 )

∫ t

0
(t−s)H− 1

2 dB(s), t≥0,

where Γ(·) is a Gamma function, H∈(0,1), B(s) is an m-dimensional standard Wiener pro-
cess defined on the complete probability space (Ω,Ft,{Ft}t≥0,P). When H=1/2, BH(t)
degenerates into the standard Brownian motion; When H ∈ (0, 1

2 ), BH(t) is not a semi-
martingale, and the increment is relevant due to singularity [11–13]. These properties
of fractional Brownian motion bring about widespread attention, and fractional Brow-
nian motion is used in physics, statistics, engineering, options [14–16] in the following
decades. In fact, differential equations driven by fractional Brownian motion have be-
come important mathematical models including Cox-Ingersoll-Ross model, etc. [12, 17–
21]. Therefore, Volterra integro-differential equations with fractional Brownian motion
have great research significance.

This paper mainly considers the nonlinear singular stochastic Volterra integro-
differential equations (SVIDEs)

dx(t)
dt

= f (x(t))+
∫ t

0 (t−τ)H− 1
2 g(x(τ))dB(τ), t∈ [0,T],

x(0)= x0,
(1.1)

where f : Rd→Rd, g : Rd→Rd×m are Borel measurable real-valued functions, H∈ (0, 1
2 ).

Yang et al. [19] firstly considered the linear case of SVIDEs (1.1) and gave the strong
convergence order of the Euler–Maruyama (EM) method, which is min{H+ 1

2 ,1} (0 <
H<1). Based on [19], the purpose of this paper is as follows:

• Because the well-posedness of SVIDEs (1.1) was left over from literature [19], this
paper firstly proves that (1.1) has a unique strong solution. The tool used in the
proof is the contraction mapping principle [22–25].

• We investigate the strong convergence order of the θ–Maruyama method, which
improves the corresponding result in [19].

In fact, some progresses have been made in the strong convergence order of numerical
methods for other classes of SVIDEs [26–29].

As shown in Section 2, (1.1) can be rewritten as the stochastic Volterra integral equa-
tions (SVIEs)

x(t)= x(0)+
∫ t

0
f (x(s))ds+

∫ t

0

1
H+ 1

2

(t−s)H+ 1
2 g(x(s))dB(s), (1.2)

where t∈ [0,T]. It is worth emphasizing that the kernel function of (1.2) is not Lipschitz
continuous, but Hölder continuous with index H+ 1

2 , H ∈ (0, 1
2 ). Indeed, for the strong


