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Abstract. In this paper, the transient Navier-Stokes equations with damping are con-
sidered. Firstly, the semi-discrete scheme is discussed and optimal error estimates are
derived. Secondly, a linearized backward Euler scheme is proposed. By the error split
technique, the Stokes operator and the H−1-norm estimate, unconditional optimal er-
ror estimates for the velocity in the norms L∞(L2) and L∞(H1), and the pressure in the
norm L∞(L2) are deduced. Finally, two numerical examples are provided to confirm
the theoretical analysis.
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1 Introduction

We consider the following transient Navier-Stokes equations with damping:
ut−ν∆u+(u·∇)u+α|u|r−2u+∇p= f in (0,T]×Ω,
divu=0 in (0,T]×Ω,
u=0 on ∂Ω,
u(0,·)=u0 in Ω,

(1.1)

where Ω⊂R2 is a convex polygon domain with the boundary ∂Ω, u=(u1,u2) and p are
the fluid velocity and pressure, respectively, f is a given external force, ν is the viscos-
ity coefficient, 2≤ r<∞ and α are two damping parameters, respectively, and |·| is the
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Euclidean norm. The damping comes from the resistance to the motion of the flow. It de-
scribes various physical phenomena such as porous media flow, drag or friction effects,
and some dissipative mechanisms [1, 2].

The existence and uniqueness of global weak and strong solutions for the problem
(1.1) were analyzed in [3,4]. At the same time, some studies have been devoted to the nu-
merical analysis of the stationary incompressible Stokes or Navier-Stokes equations with
damping. In [5], the MAC finite difference scheme was presented for the Stokes equa-
tions with damping on non-uniform grids. In [6], the conforming mixed finite element
method (MFEM) was developed, and the existence and uniqueness of the weak solu-
tions were proved. In [7], the superclose and superconvergence phenomenon of some
stable MFEs were studied. In [8–10], the local projection stabilized MFEMs with the P1-
P1 element pair were proposed for the Stokes or Navier-Stokes equations with damping.
In [11, 12], the two-level and multi-level MFEMs were applied to the problem to save
computation cost. In addition, the Navier-Stokes type variational inequality with nonlin-
ear damping was also considered in [13]. However, there were few numerical methods
reported for the transient Stokes or Navier-Stokes equations with damping.

On the other hand, in the finite element methods of the nonlinear problems, some
time-step restrictions are usually required in the error estimates. In order to overcome
this disadvantage, the error splitting technique was first presented in [14] for the non-
linear Joule heating equations and [15] for the incompressible miscible flow in porous
media, respectively. Recently, this technique was applied to various nonlinear problems,
such as the parabolic equation [16–18], the hyperbolic equation [19], the Schrödinger
equation [20–24], the Landau-Lifshitz equation [25], the Ginzburg-Landau equations [26,
27], the Klein-Gordon-Schrödinger equations [28], the thermistor equations [29–31], the
Navier-Stokes equations [32], the viscoelastic fluid flow equations [33], the MHD equa-
tions [34] and so on.

In this paper, we will research the transient Navier-Stokes equations with damping.
We present the semi-discrete scheme for this problem, and derive optimal error estimates.
Then we propose a linearized backward Euler scheme. Although unconditional optimal
error estimates were obtained for the transient Navier-Stokes equations in [35, 36], the
methods cannot be applied to the problem (1.1) for the nonlinear damping term may
result in more complicated analysis, so we employ the error splitting technique in [32],
which was used in the modified characteristics finite element methods of the Navier-
Stokes equations. A time-discrete system is introduced, and the error is split into a tem-
poral error and a spatial error. Then the temporal error and the regularity of the time-
discrete system are presented. Subsequently, the space error and the boundedness of the
velocity are derived. Finally, unconditional optimal error estimates are obtained. Espe-
cially, the analysis method of the pressure is different to that in [32]. The Stokes operator
and the H−1-norm estimate are employed, and consequently we obtained optimal error
estimates for the pressure in the norm L∞(L∞), while in [32], it is optimal in the norm
L∞(L2).

Throughout this paper, we use the classical Sobolev spaces W l,m(Ω), Ll(Ω), Hm(Ω)


