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Abstract. Semi-discrete and fully discrete mixed finite element methods are consid-
ered for Maxwell-model-based problems of wave propagation in linear viscoelastic
solid. This mixed finite element framework allows the use of a large class of exist-
ing mixed conforming finite elements for elasticity in the spatial discretization. In the
fully discrete scheme, a Crank-Nicolson scheme is adopted for the approximation of
the temporal derivatives of stress and velocity variables. Error estimates of the semi-
discrete and fully discrete schemes, as well as an unconditional stability result for the
fully discrete scheme, are derived. Numerical experiments are provided to verify the
theoretical results.
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1 Introduction

Let Ω⊂Rd(d=2 or 3) be a bounded open domain with boundary ∂Ω and T be a positive
constant. Consider the following Maxwell viscoelastic model of wave propagation:

ρutt =divσ+ f , (x,t)∈Ω×[0,T],
σ+σt =Cε(ut), (x,t)∈Ω×[0,T],
u=0, (x,t)∈∂Ω×[0,T],
u(x,0)=φ0(x), ut(x,0)=φ1(x), σ(x,0)=ψ0(x), x∈Ω.

(1.1)

Here u= (u1,··· ,ud)
T is the displacement field, σ= (σij)d×d the symmetric stress tensor,

ε(u)=(∇u+(∇u)T)/2 the strain tensor, and gt :=∂g/∂t and gtt :=∂2g/∂t2 for any function
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g(x,t). ρ(x) denotes the mass density, and C a rank 4 symmetric tensor, with

0<ρ0≤ρ≤ρ1<∞, a.e. x∈Ω, (1.2a)

0<M0τ : τ≤C−1τ : τ≤M1τ : τ, ∀ symmetric tensor τ=(τij)d×d, a.e. x∈Ω, (1.2b)

where ρ0, ρ1, M0 and M1 are four positive constants, and

σ : τ :=
d

∑
i=1

d

∑
j=1

σijτij.

Note that Cε(ut) is of the form

Cε(ut)=2µε(ut)+λdivut I (1.3)

for an isotropic elastic medium, where µ, λ are the Lamé parameters, and I the identity
matrix. f =( f1,··· , fd)

T is the body force, and φ0(x), φ1(x), ψ0(x) are initial data.
Numerous materials simultaneously display elastic and viscous kinematic be-

haviours. Such a feature, called viscoelasticity, can be characterized by using springs,
which obey the Hooke’s law, and viscous dashpots, which obey the Newton’s law. Dif-
ferent combinations of the springs and dashpots lead to various viscoelastic models, e.g.,
the three classical models of Zener, Voigt and Maxwell. We note that there is a unified
framework to describe the general constitutive law of viscoelasticity by using convolu-
tion integrals in time with some kernels [8,11,29]; however, the integral forms of constitu-
tive laws, compared with the differential forms, bring more difficulties to the design of al-
gorithms due to the numerical convolution integral. We refer the reader to [5,9–13,30–32]
for several monographs on the development and applications of viscoelasticity theory.

The numerical simulation of wave propagation in viscoelastic materials was first dis-
cussed by Kosloff et al. in [20, 21], where memory variables were introduced to avoid
the convolutional integral in the constitutive relation. Later, finite difference methods
were developed in [6, 28, 35] for the model with memory variables. There are consid-
erable research efforts on the finite element discretization in this field. In [18] Janovsky
et al. studied the continuous/discontinuous Galerkin finite element discretization and
used a numerical quadrature formula to approximate the Volterra time integral term. Ha
et al. [14] proposed a nonconforming finite element method for a viscoelastic complex
model in the space–frequency domain. Bécache el at. [3] applied a family of mixed finite
elements with mass lumping, together with a leap-frog scheme in time discretization, to
numerically solve the Zener model, and showed that their scheme is stable under certain
CFL condition. In [24–26], Rivière et al. analyzed discontinuous Galerkin methods with
a Crank-Nicolson temporal discrete scheme for quasistatic linear viscoelasticity and lin-
ear/nonlinear diffusion viscoelastic models. Rognes and Winther [27] proposed mixed
finite element methods for quasistatic Maxwell and Voigt models using weak symme-
try, and used a second backward difference scheme in the full discretization. Lee [22]
studied mixed finite element methods with weak symmetry for the Zener, Voigt and


