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Abstract. This paper is concerned with the weak Galerkin mixed finite element
method (WG-MFEM) for the second-order hyperbolic acoustic wave equation in
velocity-pressure formulation. In this formulation, the original second-order differ-
ential equation in time and space is reduced to first-order differential equations by
introducing the velocity and pressure variables. We employ the usual discontinu-
ous piecewise-polynomials of degree k ≥ 0 for the pressure and k+1 for the veloc-
ity. Furthermore, the normal component of the pressure on the interface of elements
is enhanced by polynomials of degree k+1. The time derivative is approximated by
the backward Euler difference. We show the stability of the semi-discrete and fully-
discrete schemes, and obtain the suboptimal order error estimates for the velocity and
pressure variables. Numerical experiment confirms our theoretical analysis.
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1 Introduction

The propagation phenomena of waves (e.g., acoustic, electromagnetic or elastic waves),
which are governed by a class of second-order hyperbolic equations, were extensively in-
vestigated because their varied media are often anisotropic heterogeneous or have time-
dependent properties, and the solutions of the hyperbolic conservation laws often con-
tain discontinuities. Thus, some efficient numerical methods have been employed on
the hyperbolic models to handle the problems, for instance, the Galerkin methods [9],
the mixed finite element methods (mixed FEMs) [4,13], the discontinuous Galerkin (DG)
methods [2, 10], the stabilized FEMs [3], the multiscale methods [1] and so on. In addi-
tion, the geometry complexity of media such as cracks, obstacles and arbitrarily-shaped
boundaries, also results in difficulties, and therefore, other effective methods with advan-
tages in mesh generation are developed to conquer this problem.
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In recent years, the FEMs which are capable of dealing with the polygonal and poly-
hedral meshes have caused widespread concern, and an incomplete list is: the hybrid dis-
continuous Galerkin (HDG) methods [7], the local discontinuous Galerkin (LDG) meth-
ods [33], the hybrid high-order (HHO) methods [8] and the virtual element methods
(VEMs) [24, 31].

The weak Galerkin (WG) method introduced in [30] for the second-order elliptic
equations, also plays an important roll in treating polygonal or polyhedral meshes. The
method provides a new competitive numerical technique for the FEM by introducing
the weakly defined differential operators (gradient, divergence, curl and Laplacian) to
replace classical ones. The WG method extends the traditional finite element partitions
of triangles or quadrilaterals in 2D and tetrahedrons or hexahedrons in 3D to these of
general polygons and polyhedrons by adding some parameter-free stabilization terms
which enforce the weak continuity [19]. Specifically, the WG method approximates un-
knowns with discontinuous polynomials on general meshes and does not have to choose
the penalty parameter carefully. On the other hand, the WG method is promoted actively
with some pioneer works. A computational investigation about numerical interpolations
of the WG method was conducted in [17]. Minimizing unknowns without compromis-
ing the accuracy of the numerical approximation was realized in [22] by optimal combi-
nations of the polynomial spaces. Optimal order error estimates of the WG-MFEM for
the second-order elliptic equations have been established in [26]. Furthermore, due to
its significant flexibility in mesh generation, the WG method has been applied success-
fully to a wide range of problems such as the Stokes equations [27], the Oseen equa-
tions [15], the Navier-Stokes equations [11, 16], the Biharmonic equation [20, 25], the
Maxwell equations [23], the Brinkman equations [29,32], the Helmholtz equation [21,28],
the convection-diffusion-reaction equations [5], the quasi-Newtonian Stokes flows [34],
the elliptic interface problems [18], and the coupling Stokes-Darcy problem [6, 14].

Additionally, [12] applied the WG method to the second-order hyperbolic acoustic
wave equation in the original displacement formulation, and analysed the correspond-
ing stability and convergence. For the reason that WG-MFEM inherits the advantages of
the WG method and can give a direct finite element approximation of the flux variable,
utilizing the WG-MFEM to the wave equations is of great significance. In this paper we
introduce a velocity variable and a flux (pressure) variable to reduce the original second-
order acoustic wave equation to first-order ones in time and space respectively, and es-
tablish a WG mixed finite element scheme based on the velocity-pressure formulation.
For the numerical approximation, the velocity variable is approximated by using discon-
tinuous piecewise-polynomials of degree k+1 while the pressure variable is approached
by utilizing discontinuous piecewise-polynomials of degree k. Furthermore, the normal
component of pressure is enhanced by the polynomials of degree k+1 on the edges or
faces of elements. We prove the existence and uniqueness of the numerical solution for
the fully-discrete schemes. We also analyze the stability and obtain the suboptimal order
error estimates for the semi-discrete and fully-discrete schemes. Finally, our theoretical
analysis is validated by the numerical experiment.


