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Abstract. In this paper, we propose, analyze, and test a new fully discrete, efficient, de-
coupled, stable, and practically second-order time-stepping algorithm for computing
MHD ensemble flow averages under uncertainties in the initial conditions and forc-
ing. For each viscosity and magnetic diffusivity pair, the algorithm picks the largest
possible parameter θ ∈ [0,1] to avoid the instability that arises due to the presence of
some explicit viscous terms. At each time step, the algorithm shares the same system
matrix with all J realizations but has different right-hand-side vectors for all J realiza-
tions. This saves assembling time and computer memory, allows the reuse of the same
preconditioner, and can take the advantage of block linear solvers. For the proposed
algorithm, we prove stability and convergence rigorously. To illustrate the predicted
convergence rates of our analysis, numerical experiments with manufactured solutions
are given on a unit square domain. Finally, we test the scheme on a benchmark channel
flow over a step problem and it performs well.
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1 Introduction

Numerical simulations of realistic flows are significantly affected by input data, e.g., ini-
tial conditions, boundary conditions, forcing functions, viscosities, etc, which involve
uncertainties. As a result, uncertainty quantification (UQ) plays an important role in
the validation of simulation methodologies and helps in developing rigorous methods to
characterize the effect of the uncertainties on the final quantities of interest. A popular
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approach for dealing with uncertainties in the data is the computation of an ensemble
average of several realizations. Many fluid dynamics applications e.g., ensemble Kalman
filter approach, weather forecasting, and sensitivity analyses of solutions [14,41,45–47,56]
require multiple numerical simulations of a flow subject to J different input conditions
(realizations), which are then used to compute means and sensitivities.

Recently, the study of MHD flows has become important due to applications in e.g.,
engineering, physical science, geophysics and astrophysics [6, 9, 16, 19, 29, 57], liquid
metal cooling of nuclear reactors [5,24,60], process metallurgy [15,58], and MHD propul-
sion [43,48]. For the time dependent, viscous and incompressible magnetohydrodynamic
(MHD) flow simulations, this leads to solving the following J separate nonlinearly cou-
pled systems of PDEs [8, 15, 39, 50]:

uj,t+uj ·∇uj−sBj ·∇Bj−ν∆uj+∇pj = f j(x,t) in Ω×(0,T], (1.1a)

Bj,t+uj ·∇Bj−Bj ·∇uj−νm∆Bj+∇λj =∇×gj(x,t) in Ω×(0,T], (1.1b)

∇·uj =0 in Ω×(0,T], (1.1c)

∇·Bj =0 in Ω×(0,T], (1.1d)

uj(x,0)=u0
j (x) in Ω, (1.1e)

Bj(x,0)=B0
j (x) in Ω. (1.1f)

Here, uj, Bj, pj, and λj denote the velocity, magnetic field, pressure, and artificial magnetic
pressure solutions, respectively, of the j-th member of the ensemble with slightly differ-
ent initial conditions u0

j and B0
j , and forcing functions f j and ∇×gj for all j = 1,2,··· , J.

The Ω⊂Rd (d=2 or 3) is the convex domain, ν is the kinematic viscosity, νm is the mag-
netic diffusivity, s is the coupling number, and T is the simulation time. The artificial
magnetic pressure λj are Lagrange multipliers introduced in the induction equations to
enforce divergence free constraints on the discrete induction equations but in continuous
case λj =0. All the variables above are dimensionless. The magnetic diffusivity νm is de-
fined by νm :=Re−1

m =1/(µ0σ), where µ0 is the magnetic permeability of free space and σ
is the electric conductivity of the fluid. For the sake of simplicity of our analysis, we con-
sider homogeneous Dirichlet boundary conditions for both velocity and magnetic fields.
For periodic boundary conditions or inhomogeneous Dirichlet boundary conditions, our
analyses and results will still work after minor modifications.

To obtain an accurate, even classical Navier Stokes (NSE) simulation for a single mem-
ber of the ensemble, the required number of degrees of freedom (dofs) is very high, which
is known from Kolmogorov’s 1941 results [40]. Thus, for a single member of MHD en-
semble simulation, where velocity and magnetic fields are nonlinearly coupled, is com-
putationally very expensive with respect to time and memory. As a result, the com-
putational cost of the above coupled system (1.1a)-(1.1f) will be approximately equal to
J× (cost of one MHD simulation) and will generally be computationally infeasible. Our
objective in this paper is to construct and study an efficient and accurate algorithm for
solving the above ensemble systems.


