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Abstract. Radial Basis Function (RBF) kernels are key functional forms for advanced
solutions of higher-order partial differential equations (PDEs). In the present study, a
hybrid kernel was developed for meshless solutions of PDEs widely seen in several
engineering problems. This kernel, Power-Generalized Multiquadric - Power-GMQ,
was built up by vanishing the dependence of ε, which is significant since its selec-
tion induces severe problems regarding numerical instabilities and convergence issues.
Another drawback of ε-dependency is that the optimal ε value does not exist in per-
petuity. We present the Power-GMQ kernel which combines the advantages of Radial
Power and Generalized Multiquadric RBFs in a generic formulation. Power-GMQ RBF
was tested in higher-order PDEs with particular boundary conditions and different
domains. RBF-Finite Difference (RBF-FD) discretization was also implemented to in-
vestigate the characteristics of the proposed RBF. Numerical results revealed that our
proposed kernel makes similar or better estimations as against to the Gaussian and
Multiquadric kernels with a mild increase in computational cost. Gauss-QR method
may achieve better accuracy in some cases with considerably higher computational
cost. By using Power-GMQ RBF, the dependency of solution on ε was also substan-
tially relaxed and consistent error behavior were obtained regardless of the selected ε
accompanied.
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1 Introduction

Numerical methods such as Finite Element Method (FEM), Finite Volume Method (FVM),
Boundary Element Method (BEM) and Meshless Methods has been extensively used to
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obtain the numerical solution of engineering problems [1]. As a result of many years
of progress, FEM has become a standard method in the solution of differential equa-
tions [2]. Problems with complex domains have been successfully simulated with FEM,
however, the process of mesh generation requires advanced algorithms and computa-
tional resources [3]. Since the mesh structure may have a considerable effect on the con-
vergence and accuracy of FEM, the applications of meshless methods have been expand-
ing owing to the fact that no mesh generation is needed. Radial Basis Functions (RBF)
based methods is one type of the meshless methods and have been extensively investi-
gated during the last two decades [4–8]. The radial characteristic of RBFs makes these
functions easily applicable to higher dimensional problems and many of the RBFs are
infinitely smooth. Kansa [9, 10] is the first to use the Multiquadric RBF in the solution of
differential equations, since then, several type of RBFs such as Gaussian, Inverse Multi-
quadric, Bessel, Radial Powers and Wendland have been assessed in several engineering
problems [11]. More details about various RBF approaches to solve differential equations
can be found in the literature [12].

Exponential convergence rates were observed by using RBFs in the solution of differ-
ential equations [13]. However, the value of the shape/scale parameter, i.e., ε, is crucially
important and an optimum value of the shape parameters usually exists. While more
accurate results can be obtained for small values of the shape parameter, numerical insta-
bility and convergence problems in the solution step are generally observed [14]. Meth-
ods such as Contour-Pade [15], RBF-QR [16], HS-SVD [17] and WSVD for PU-RBF [18]
were developed to overcome ill-conditioning. In another study, an improved Contour-
Pade algorithm with vector-valued rational approximation method was implemented
in RBF-FD to solve Poisson’s equation in three-dimensional spherical shell [19]. These
methods open up a low shape parameter-regime with more accurate results such that
the precise determination of the shape parameter is not needed. Apart from these meth-
ods, preconditioning of the matrix [20], local support [21, 22] and hybrid kernels such as
Gaussian-cubic kernel [23] were also used to decrease the condition number of the ma-
trix in order to obtain a stable solution. All of these stable algorithms greatly advanced
the implementation of RBF methods into the area of solving PDEs. However, these al-
gorithms come with extra computational costs [23]. The knowledge about the efficiency
of these algorithms on the solution of PDEs with complex domains is also substantially
limited.

The optimum shape parameter, i.e., ε, value is highly influenced by several factors
such as the differential equation, the RBF type, boundary conditions, node distribution
and the number of nodes. The determination of the optimal ε is one of the subjects of the
ongoing research [24–27]. Leave-one-out cross validation (LOOCV) [28] and maximum
likelihood estimation [29] are two prominent methods used in RBF interpolation to esti-
mate the optimum ε. However, these methods may not be effectively implemented for
the determination of shape parameter in the solution of PDEs [30].

Moreover, polyharmonic spline RBFs such as Radial Powers and Thin Plate Splines
are free of shape parameter which eliminates the disadvantage of finding an optimum


