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Abstract. In this paper, a novel unconditionally energy stable Smoothed Particle Hy-
drodynamics (SPH) method is proposed and implemented for incompressible fluid
flows. In this method, we apply operator splitting to break the momentum equation
into equations involving the non-pressure term and pressure term separately. The idea
behind the splitting is to simplify the calculation while still maintaining energy sta-
bility, and the resulted algorithm, a type of improved pressure correction scheme, is
both efficient and energy stable. We show in detail that energy stability is preserved
at each full-time step, ensuring unconditionally numerical stability. Numerical exam-
ples are presented and compared to the analytical solutions, suggesting that the pro-
posed method has better accuracy and stability. Moreover, we observe that if we are
interested in steady-state solutions only, our method has good performance as it can
achieve the steady-state solutions rapidly and accurately.
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1 Introduction

Smoothed Particle Hydrodynamics (SPH) is a particle-based mesh-free method to numer-
ically solve fluid flow equations by discretizing the continuous fluid into a set of discrete
particles. It was first presented to solve astronautic problems [1,2]. With an improvement
in accuracy and efficiency, the SPH method has been applied to a wide range of research
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and engineering fields, including computer graphics and computational fluid dynamics
(CFD). In recent years, the SPH method has a number of attractive features as compared
with traditional CFD methods [3, 4, 14]. First of all, it is a Lagrangian method, and the
most significant benefit inherited from the Lagrangian method is the mesh-free property,
which is suitable for solving the problems involving complicated geometry, high defor-
mation and multiple components [5]. Other significant advantages include programmer-
friendly implementation and low computational cost. In practice, the SPH method can be
coupled with traditional mesh-based methods like the Finite Difference Method (FDM)
and Discrete Element Method (DEM) to balance accuracy and efficiency [6].

A number of recent researches on the SPH methods focus on the incompressible fluid
flow, and in many scenarios the incompressibility is an essential property of the fluid.
The weakly compressible SPH (WCSPH) method is first used to solve the incompressible
fluid flow, where the incompressibility is approximated by the weak compressibility [8,9].
In the WCSPH method, the velocity unknown is updated explicitly, and the pressure is
related to the density and calculated by an artificial state equation. The incompressibility
constraint is treated by high sonic velocities and small time steps. The WCSPH method
cannot guarantee that the fluid is completely incompressible, but it has the merits of
being easy to implement and computationally efficient when the number of particles is
small.

In order to obtain more accurate results, the Incompressible SPH (ISPH) method
is proposed for the incompressible fluid flow simulation [10]. According to the ISPH
method, the pressure field can be determined by a projection scheme in which a Pres-
sure Poisson equation (PPE) needs to be solved. The most popular ISPH methods in-
clude the Implicit Incompressible SPH (IISPH) [11], Predictive-Corrective Incompressible
SPH (PCISPH) [12], Divergence-Free SPH (DFSPH) [13] and corrective methods based
on these three methods. The projection scheme is usually used in the ISPH methods. It
provides a semi-implicit procedure that enables us to obtain the pressure by solving the
PPE [12]. Generally, the PPE can be derived from either a constant density constraint or
a divergence-free velocity constraint. On the one hand, the projection scheme calculates
the pressure implicitly, which typically leads to higher performance and allows large
time steps. On the other hand, the constraint ensures the density deviation desired or
velocity field divergence-free, resulting in a more accurate and stable simulation in the
incompressible fluid flow. In general, the ISPH methods show the advantages of greater
accuracy and stability. However, in the existing projection methods used for the ISPH
methods, the velocity representation in the PPE is not mathematically consistent with the
one in the equation for updating velocity. This violation of consistency in the methods
might increase the numerical instability.

The laws of mass and momentum conservation have been widely discussed in the
incompressible SPH analysis, while the energy conservation law was usually neglected
because the energy change was considered to be very small in the incompressible fluid
flow simulation. However, energy conservation has a significant impact on the numerical
stability of the SPH methods [15]. The stability analysis generally consists of two aspects,


