DOI: 10.4208/aamm.OA-2021-0187 December 2022

Numerical Analysis of Two-Grid Block-Centered Finite Difference Method for Two-Phase Flow in Porous Medium

Jing Zhang and Hongxing Rui*

School of Mathematics, Shandong University, Jinan, Shandong 250100, China

Received 31 May 2021; Accepted (in revised version) 10 November 2021

Abstract. In this paper, a two-grid block-centered finite difference method for the incompressible miscible displacement in porous medium is introduced and analyzed, which is to solve a nonlinear equation on coarse mesh space of size H and a linear equation on fine grid of size h. We establish the full discrete two-grid block-centered finite difference scheme on a uniform grid. The error estimates for the pressure, Darcy velocity, concentration variables are derived, which show that the discrete L_2 error is $O(\Delta t + h^2 + H^4)$. Finally, two numerical examples are provided to demonstrate the effectiveness and accuracy of our algorithm.

AMS subject classifications: 65M06, 65M12, 65M15, 65M55

Key words: Porous media, two phase flow, block-centered finite difference, two-grid, numerical analysis.

1 Introduction

In this paper, we consider the incompressible miscible displacement in porous media [1–3]

$$\begin{cases} \nabla \cdot u = q(x,t), & x \in \Omega, \quad t \in J, \\ u = -\frac{\kappa(x)}{\mu(c)} \nabla p, & x \in \Omega, \quad t \in J, \\ \varphi(x) \frac{\partial c}{\partial t} + \nabla \cdot (uc) - \nabla \cdot (D\nabla c) = \tilde{c}q, \quad x \in \Omega, \quad t \in J. \end{cases}$$

We assume that Ω is a rectangular domain in \mathbb{R}^2 , $t \in J = (0,T]$, and T denotes the final time. The concentration is denoted by c(x,t), p(x,t) is the fluid pressure, and $u = (u_1, u_2)^T$ is Darcy velocity of the fluid, $\kappa(x)$ and $\varphi(x)$ represent the permeability and porosity of

*Corresponding author.

http://www.global-sci.org/aamm

1433

©2022 Global Science Press

Emails: zhangjing169277@163.com (J. Zhang), hxrui@sdu.edu.cn (H. Rui)

the porous medium, respectively. $\mu(c)$ is the concentration dependent viscosity. The function \tilde{c} is the concentration of the same component as measured by c in the injected fluid, which must be specified whenever injection is taking place, and it will be assumed that $\tilde{c} = c$, when the fluid is being produced, *q* is the external flow rate at wells.

For the sake of simplicity, let $a(c) = \kappa(x) / \mu(c)$, $D = \varphi d_m I = \lambda I$, and $w = (w^x, w^y) =$ $uc - D\nabla c = uc - \lambda \nabla c$, where d_m is the molecular diffusivity, I is the second order identity matrix. Then the question may be equivalently written in the form:

$$\nabla \cdot u = q(x,t), \qquad x \in \Omega, \quad t \in J,$$
 (1.1a)

$$u = -a(c)\nabla p, \qquad x \in \Omega, \quad t \in J, \tag{1.1b}$$

$$\begin{cases} u = -a(c)\nabla p, & x \in \Omega, \quad t \in J, \\ \varphi(x)\frac{\partial c}{\partial t} + \nabla \cdot w = f(\tilde{c}), & x \in \Omega, \quad t \in J, \end{cases}$$
(1.1b) (1.1c)

$$w = uc - \lambda \nabla c, \qquad x \in \Omega, \quad t \in J,$$
 (1.1d)

where $f(\tilde{c}) = \tilde{c}q$.

We consider the following boundary condition and initial condition for the problem:

$$u \cdot \mathbf{n} = 0, \qquad x \in \partial \Omega, \quad t \in J,$$
 (1.2a)

$$(\lambda \nabla c) \cdot \mathbf{n} = 0, \qquad x \in \partial \Omega, \quad t \in J,$$
 (1.2b)

$$c|_{t=0} = c_0, \qquad \qquad x \in \Omega, \tag{1.2c}$$

where **n** is the unit outward normal vector to $\partial \Omega$, the compatibility condition and the uniqueness condition are as follows

$$\int_{\Omega} p(x) \mathrm{d}x = 0. \tag{1.3}$$

For problem (1.1a)-(1.3), we consider the following smoothness hypotheses (H):

(1) The functions $a(c), b(c), \lambda$ are bounded, And, there exist positive constants a_0, a_1, b_0 , $b_1, \lambda_0, \lambda_1$, such that

$$0 < a_0 \leq a \leq a_1, \quad 0 < b_0 \leq b \leq b_1, \quad 0 < \lambda_0 \leq \lambda \leq \lambda_1.$$

- (2) The second derivative of f, q are continuously bounded in $\Omega \times J$, f, a is Lipschitzcontinuous corresponding to variable *c*. The function φ is continuous, there exist a positive constant φ_0 , such that $\varphi \ge \varphi_0 > 0$.
- (3) $p \in L_{\infty}(J; W_{\infty}^{4}(\Omega)), u \in C^{1}(J; W_{\infty}^{1}(\Omega))^{2}, c \in W_{\infty}^{2}(J; W_{\infty}^{4}(\Omega)).$

People have been interested in efficient oil exploitation and improving the utilization of groundwater resource for a long time. Two-phase flow and transportation of fluids in porous media play a vital role in both theoretic and applicative aspects in groundwater contamination or petroleum engineering. The incompressible miscible displacement