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Abstract. We propose a class of up to fourth-order maximum-principle-preserving
and mass-conserving schemes for the conservative Allen-Cahn equation equipped with
a non-local Lagrange multiplier. Based on the second-order finite-difference semi-
discretization in the spatial direction, the integrating factor Runge-Kutta schemes are
applied in the temporal direction. Theoretical analysis indicates that the proposed
schemes conserve mass and preserve the maximum principle under reasonable time
step-size restriction, which is independent of the space step size. Finally, the theoretical
analysis is verified by several numerical examples.
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1 Introduction

The classical Allen-Cahn (AC) equation was proposed by Allen and Cahn [1] in 1979 to
describe the phenomenological model of the inverse phase boundary motion in crystals.
As an important class of phase field models, the AC equation has been widely applied
in image processing [2], mean curvature motion, materials science [3,4], and so on. In
recent years, many studies have been conducted on the classical AC equation [5-8].

The classical AC equation is considered as a well-known prototypical gradient flow

du(x,t) =e*Au(x,t)+f(u(x,t)), x€Q, t>0, (1.1)

where Q={[a,b] CR is the bounded domain. The parameter € >0 and u usually represent
the interfacial width and the difference between the concentrations of two mixtures” com-
ponents, respectively. The symbol A denotes the usual Laplacian operator and f(u) is the
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negative derivative of a polynomial double-well potential, i.e., f(u)=—F'(u). Consider
the initial and periodic boundary conditions

u(x,0)=up(x), xeQ), (1.2a)
u(a,t)=u(b,t), t>0. (1.2b)

The L? inner product and norm are denoted as

1
— _ 27.\?2
(Fg)= | fedx, A= ( [ IfPex)”,
respectively. The L* norm is defined as
1l =max|f (x)].
xeQ)

The energy functional of the classical AC equation is defined as

E[u]zezz(Vu,Vu)—i—(F(u),l):/Q<€22]Vu(x,t)\z—f—F(u(x,t)))dx, (1.3)
where 1
F(u):zl(u2—1)2, f(u)=—F'(u)=u—u’.

By taking the L? inner product of Eq. (1.1) with 9;u(x,t), we obtain

;tE[u(x,t)]:—/ Dpu(x,b)[2dx <0, VE>0. (1.4)
@)

Thus, the classical AC equation satisfies the energy dissipation law. By taking the L?
inner product of Eq. (1.1) with 1, we have

jt/Qu(x,t)dx:ez/QAu(x,t)dx—i—/Qf(u(x,t))dx, Vt>0. (1.5)

It can be proven that the classical AC equation can not conserve the mass unless
u)dx=0.
| )
In this paper, by introducing a Lagrange multiplier
1
A=— / u(x,t))dx,
o] o fn)

the conservative modification of the classical AC equation is expressed as [30]

o (x,t) =e*Au(x,t)+ f(u(x,t)), x€Q, t>0, (1.6)



