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Abstract. The so-called “small denominator problem” was a fundamental problem of
dynamics, as pointed out by Poincaré. Small denominators appear most commonly in
perturbative theory. The Duffing equation is the simplest example of a non-integrable
system exhibiting all problems due to small denominators. In this paper, using the
forced Duffing equation as an example, we illustrate that the famous “small denomi-
nator problems” never appear if a non-perturbative approach based on the homotopy
analysis method (HAM), namely “the method of directly defining inverse mapping”
(MDDiM), is used. The HAM-based MDDiM provides us great freedom to directly
define the inverse operator of an undetermined linear operator so that all small de-
nominators can be completely avoided and besides the convergent series of multiple
limit-cycles of the forced Duffing equation with high nonlinearity are successfully ob-
tained. So, from the viewpoint of the HAM, the famous “small denominator problems”
are only artifacts of perturbation methods. Therefore, completely abandoning pertur-
bation methods but using the HAM-based MDDiM, one would be never troubled by
“small denominators”. The HAM-based MDDiM has general meanings in mathemat-
ics and thus can be used to attack many open problems related to the so-called “small
denominators”.
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1 Origin of “small denominator problem”

Poincaré [1] pointed out that the so-called “small denominator problem” was “the fun-
damental problem of dynamics”. The small denominator was first mentioned by De-
launay [2] in his 900 pages book about celestial motions using perturbation method.
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Poincaré [1] first recognized that, when small denominator appears, the coefficients of
perturbation series may grow too large too often, threatening the convergence of the se-
ries. As pointed out by Pérez [3], “small denominators are found most commonly in
the perturbative theory”. It often appears when perturbation methods are used to solve
problems in classical and celestial mechanics [4], fluid mechanics [5, 6], and so on [7, 8].

What is the origin of the so-called “small denominator problem”? As pointed out
by Giorgilli [9], the Duffing equation [10] “is perhaps the simplest example of a non-
integrable system exhibiting all problems due to the small denominators”. So, without
loss of generality, let us focus on the forced Duffing equation

N [u(t)]=u′′(t)+2ξu′(t)+u(t)+βu3(t)−αcos(Ωt)=0, (1.1)

where N is a nonlinear operator, the prime denotes the differentiation with respect to
the time t, α and Ω is the amplitude and frequency of the external force F = αcos(Ωt),
ξ>0 is the resistance coefficient, and β>0 is a physical parameter related to nonlinearity,
respectively.

As pointed out by Kartashova [11], “physical classification of PDEs is based not on the
form of equations, but on the form of solutions”. So, let us consider here the stationary
periodic limit-cycle of u(t) as t→+∞ of the forced Duffing equation (1.1), which can be
expressed in the form:

u(t)=
+∞

∑
n=1

{
an cos(ωnt)+bn sin(ωnt)

}
, (1.2)

where an, bn are constants and

ωn =(2n−1)Ω, n≥1. (1.3)

This is mainly because the common solution

Aexp(−ξt)cos(t)+Bexp(−ξt)sin(t)

of the linear equation
u′′(t)+2ξu′(t)+u(t)=0

tends to zero as t→+∞ for arbitrary constants A and B, and thus disappear in the so-
called “solution-expression” (1.2) of the limit-cycle.

Let us first show how perturbation technique [12, 13] can bring the so-called small
denominators into the above-mentioned problem. Let β be a small parameter and assume
that u(t) can be expanded in such a series

u(t)=u0(t)+
+∞

∑
n=1

un(t)βn. (1.4)


