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Abstract. Storage requirement and computational efficiency have always been chal-
lenges for the efficient implementation of discontinuous Galerkin (DG) methods for re-
al life applications. In this paper, a fully implicit Jacobian-Free Newton-Krylov (JFNK)
method is developed in the context of DG discretizations for the three-dimensional
compressible Euler and Navier-Stokes equations. Compared with the Jacobian-based
methods, the Jacobian-Free approach saves the storage for the Jacobian matrix which
can be of great importance for DG methods. Three types of preconditioners are inves-
tigated in which the block diagonal preconditioner requires the least storage, while the
block LU-SGS and ILU0 preconditioners require more storage but are more computa-
tionally efficient. An implicit time-stepping strategy is adopted for the stability of the
current solver, which is based upon a hexahedral spatial mesh and the nonlinear solver
package Kinsol is used to improve the computational efficiency and robustness. Nu-
merical results demonstrate that the preconditioned JFNK-DG solver can substantially
reduce the storage requirement compared with the Jacobian based method without
significantly compromising accuracy or efficiency. Furthermore, as a good compro-
mise between efficiency and storage requirement, the ILU0 preconditioner shows the
best choice of the preconditioners presented.
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1 Introduction

Discontinuous Galerkin (DG) methods using high order approximations have become
an attractive alternative for the solutions of systems of conservative laws [1–4]. The at-
tractive features, such as high-order accuracy, great geometry flexibility, straightforward
implementation of h/p adaptation and parallel computing make it suitable for aerody-
namic applications [5–9]. The same as the classical finite element methods, DG methods
can achieve high-order accuracy on grids by means of high-order polynomial approxima-
tion within elements while the physics of wave propagation is accounted for by means
of solving Riemann problems at element interfaces, as in upwind finite volume meth-
ods. Despite these advantages, computational efficiency has always been a challenge in
DG methods for their use in real life applications. It is noted in [15–18] that the explicit
Runge-Kutta methods are not good choices for DG schemes in steady-state simulation-
s due to their severe stability limitations. Thus in this case the use of an implicit time
integration is almost mandatory. The Newton-Krylov method [10, 34] is considered as
a robust and efficient approach for solving the nonlinear algebraic equations that arise
from a DG discretization and has been used in [11–13]. However in order to speed up
convergence, this method often combines with preconditioners, such as block diagonal
(BD) [14], block Gauss Siedel (BGS) [15], Lower-Upper Symmetry Gauss Siedel (LU-SGS)
factorization [16] and Incomplete Lower-Upper factorization with zero fill-in (ILU0) [17].
Nevertheless there is a very large storage requirement for the sparse Jacobian matrix
and the preconditioners, especially for three-dimensional simulations, which provides
a limitation on DG schemes when the grid density and/or the order of polynomial ap-
proximation increases [18]. Since only the product of the Jacobian matrix and a vector
is required in the Krylov subspace methods, a difference quotient of the nonlinear func-
tion can be used as an approximation, which circumvents the construction and storage
of the Jacobian matrix [19, 20]. A good preconditioning is still required in order to obtain
satisfactory performance, making the schemes not completely matrix-free. Nevertheless,
this can be formed based upon an approximation of the true Jacobian matrix which is
easy to implement [21–23]. Regarding the specific Krylov subspace method, in this work
we consider only GMRES since it is appropriate for non-symmetric and indefinite linear
systems.

In this paper, a Jacobian-Free Newton-Krylov approach for the discontinuous Galerkin
method is developed on hexahedral grids with a specific focus upon significantly reduc-
ing the storage requirement against the original Jacobian based solver. A novel feature
of our work is that we conduct a comparative study of several preconditioners in order
to investigate their computational efficiency in the framework of the JFNK-DG solver. To
maximize the robustness of the three-dimensional solver, the Kinsol package [24–26] is
used combining with an implicit time-stepping strategy. The developed preconditioned
JFNK-DG method is used to compute a variety of flow problems on hexahedral grids to
demonstrate its accuracy, efficiency and robustness. Numerical results demonstrate that
the preconditioned Jacobian-Free Newton-Krylov approach works well with DG method
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in solving the three-dimensional Euler and Navier-Stokes equations.

2 Governing equations

The Navier-Stokes equations governing unsteady compressible viscous flow can be ex-
pressed as

∂U(x,t)

∂t
+

∂Fk (U(x,t))

∂xk
=

∂Gk (U(x,t))

∂xk
, (2.1)

where the summation convention has been used. The conservative variable vector U,
inviscid flux vector F and viscous flux vector G are defined by

U=





ρ
ρui

ρe



, Fj =





ρuj

ρuiuj+pδij

ρhuj



 and Gj=





0
σij

ulσlj+qj



, (2.2)

where ρ,p and e denote the density, static pressure and total energy per unit mass, re-
spectively. Furthermore, ui is the velocity vector of the flow in the coordinate direction
xi. The components of the viscous stress tensor σij and the heat flux vector qj are given
by

σij =µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk
δij, qj =

1

γ−1

µ

Pr

∂T

∂xj
, (2.3)

where T is the temperature of the fluid. With the state equation for perfect gas, the system
of equations can be completed:

p=(γ−1)ρ
(
e−0.5ujuj

)
. (2.4)

In the above equations, µ denotes the molecular viscosity, γ the ratio of the specific heat-
s and Pr is the dimensionless Prandtl number, which is taken 0.72 for air. Neglecting
viscous effects, the left-hand-side of Eq. (2.1) represents the Euler equations governing
unsteady compressible inviscid flows.

3 JFNK-DG method

3.1 DG discretization

Using a mixed formulation [12], Eq. (2.1) can be reformulated as

s=∇U, (3.1a)

∂U

∂t
+∇·fc (U)−∇·fv (U,s)=0, (3.1b)
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where s is an introduced auxiliary variable, while fc(U) and fv (U,s) are the inviscid and
viscous flux tensors. By introducing suitable piecewise polynomial test functions φh and
approximate solutions Uh at each cell K, we obtain the weak formulations:

∫

K
φhshdΩ=

∫

K
φh∇UhdΩ+

∫

∂K
φ−

h

(
Ûh−U−

h

)
·ndσ, (3.2a)

∫

K
φh

∂Uh

∂t
dΩ−

∫

K
∇φh ·(fc(Uh)−fv (Uh,sh))dΩ

+
∫

∂K
φh(fc(Uh)−fv (Uh,sh))·ndσ=0, (3.2b)

where Ω is the domain, σ the boundary of Ω. The variables with superscript ”−” denote
the values inside the cell K and Ûh ·n denotes the numerical flux function. fc(Uh)·n and
fv(Uh,sh)·n are inviscid and viscous numerical fluxes, respectively. The inviscid numer-
ical flux fc(Uh)·n can be handled as in the Finite Volume (FV) method. Here we use the
well-known Local Lax-Friedrichs (LLF) [27] or Roe flux [28] for the approximate solution
of the Riemann problem. As for the viscous numerical flux, [2, 29, 30] have proposed
feasible approaches. However the well-known BR2 scheme [17] is used in the current
solver.

3.2 Jacobian-Free Newton-Krylov approach

Using auxiliary variables in Eq. (3.2a) to substitute them in Eq. (3.2b), the discrete form
can be reformulated as a nonlinear ordinary differential equation system of the form

M
du

dt
+R(u)=0, (3.3)

where u is the global vector of unknown degrees of freedoms (DOFs) and M represents
the global block diagonal mass matrix. At this point a temporal discretization is required.
When we are interested in steady-state solutions, it is possible to set du

dt to be zero. How-
ever it is preferable to use an implicit time-stepping scheme with excellent stability prop-
erties. This allows large time steps to be selected (and often allows steady-state to be
reached more efficiently when a good ”initial guess” is not available) and results in a
nonlinear algebraic system G(un+1)= 0 in time step tn+1. Using the implicit backward
Euler method, G(un+1) can be expressed as

G(un+1)=M
un+1−un

∆t
+R(un+1). (3.4)

In this expression, un and un+1 are the solution vectors at the times tn and tn+1, respec-
tively.

Newton’s method is used for solving the nonlinear system which results in a linear
system

J(u(k))δ(k+1)=−G(u(k)) (3.5)
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at the kth Newton step (k=0,1,2,···). In this system, u(k) represents the kth approximation
to un+1, typically commencing with the initial guess u(0) = un. When the solution to
Eq. (3.5) has been found, the approximation to un+1 is updated as

u(k+1)=u(k)+δ
(k+1).

The Jacobian matrix can be evaluated as

J(u(k))=
∂G

(
u(k)

)

∂u
,

which is an N×N block sparse matrix, where N is the number of elements in the com-
putational domain. The rank of each block is M×Ndo f , M being the number of variables
of the Navier-Stokes equations and Ndo f the numbers of DOFs for each variable. When
Krylov subspace methods [10] are used for solving this linear system, a matrix-vector
product is required at each GMRES iteration:

ω= J(u(k))p. (3.6)

It can be observed that

J(u(k))p≈ G(u(k)+εp)−G(u(k))

ε
, (3.7)

where ε is a small scalar. Hence the product can be estimated directly without knowing
the matrix J(u(k)). Although an additional cost of evaluation of function G is required, the
more costly evaluation of the matrix J(u(k)) is not needed at the start of the kth Newton
step and the large memory required for storing the matrix is saved. Since the storage
of the Jacobian matrix grows quickly when the order increases for the DG method, the
Jacobian-Free approach seems especially attractive.

3.3 Preconditioning

The Jacobian matrix arising from a DG discretization is generally ill-conditioned and
the conditioning deteriorates as mesh size h is reduced or order p is increased, which
makes the standard GMRES iteration converge very slowly. In order to speed up, pre-
conditioning plays a significant role. In this work right preconditioning is used, which
reformulates Eq. (3.5) as

(J(u(k))P−1)(Pδ
(k+1))=−G(u(k)), (3.8)

where P is the preconditioning matrix. To achieve a fast convergence, P should be an
approximation of the matrix J, but much easier to invert and save.

The Jacobian matrix J can be decompose into a lower diagonal part L, a block diagonal
part D and an upper diagonal part U as

J=L+D+U. (3.9)
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When neglecting the off diagonal blocks L and U, the simplest block diagonal/Jacobi
preconditioner can be obtained

P=D. (3.10)

Block LU-SGS preconditioner is considered as a more sophisticated preconditioner for
compressible flow simulations and has been widely used in FV and DG methods

P=(D+L)D−1(D+U). (3.11)

Another often-used preconditioner in DG schemes is the Incomplete LU factorization, in
which an approximation of the Jacobian J̃ can be obtained

P= J̃= L̃Ũ. (3.12)

In these preconditioners, the block diagonal method is often used due to its easy imple-
mentation and small storage requirement. However this preconditioner fails to capture
much information from the original Jacobian matrix. On the contrary, the block LU-SGS
preconditioner and ILU0 preconditioner keep much of the Jacobian information, thus
requiring more storage but are more efficient. See [14, 15, 23] for more details of these
preconditioners.

3.4 Storage requirement for preconditioners

When a DG discretization is adopted, the degrees of freedoms are only coupled with
those of the neighbouring elements and the number of nonzero blocks for each block row
K in the Jacobian is equal to the number of elements surrounding the element K plus one
(= 7 for each interior hexahedral element). Neglecting the boundary elements, 7 × N
nonzero blocks are stored for the block LU-SGS or ILU preconditioner, which leads to the
overall amount of nonzeros storage

Memory(LU-SGS) = Memory(ILU)=7×N×
(

M×Ndo f

)2
.

Since only the diagonal blocks are stored for the BD preconditioner, the nonzeros in this
preconditioner is

Memory(BD)=N×
(

M×Ndo f

)2
.

In brief, the actual storage requirement of the preconditioners mentioned is MLUSGS ≈
MILU≈7×MBD, where Mx denotes the storage requirement of the preconditioner x.

4 Numerical results

In this section, a few examples, including both inviscid and viscous test cases, are pre-
sented to illustrate the high efficiency and robustness of the JFNK-DG method in terms
of the storage requirement and computational CPU time. All of the computations are
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performed on a HP Compaq dx7518 desktop computer (2.67GHz Q8400 CPU with 8G-
bytes memory) with linux operating system except the last case which is performed on a
HP Z620 workstation computer (3.6GHz Xeon CPU with 32Gbytes memory). A restarted
GMRES method is used for all these test cases, with a maximum Krylov space of 60 vec-
tors and a maximum number of 180 iterations (i.e., at most two restarts). The nonlinear
convergence residual is set to be 10−10 and the maximum step is set to be 100 for each test
case (i.e., non-convergence is assumed if this number of nonlinear iterations is exceeded).
In order for robustness, ∆t= 0.1 is used for the first time steps of all the computations,
which is then increased sharply to ∆t→∞ (i.e., one step of the Newton’s method in the
computation of steady state solutions) in the following time steps. Note that we do not
propose this as an optimal strategy (the study of which is beyond the scope of this pa-
per) however it does allow us to make a consistent comparison of the preconditioners
considered.

4.1 An inviscid flow past a channel with a smooth bump

The inviscid flow past a channel with a smooth bump [31] is considered in this test case.
This simple problem is chosen to assess the accuracy of the numerical solution obtained
by the JFNK-DG method. The flow condition is given at a Mach number of 0.5 based on
the freestream velocity. Three successive refined quadratic grids are used to obtain the
convergence rate, with point distribution of 17×8×4, 33×15×7 and 65×29×13, respec-
tively. The L2-norm of entropy production is used as the error measurement

‖ε‖L2(Ω)
=

√∫

Ω

ε2dΩ, (4.1)

where the entropy production is defined as

ε=
S−S∞

S∞

=
p

p∞

(
ρ∞

ρ

)γ

−1. (4.2)

Table 1 illustrates the computed rates of convergence of the JFNK-DG method. It can
be clearly observed that the expected order of O(hp+1) can be obtained. Since the non-
uniform grids are used for this test case with curved boundaries, the grid distribution
may cause some error on the computed order. This can be the reason why the order
between the second and third mesh is 2.88 for DG (p=2) results, which is not very close
to 3.

Tables 2-4 shows the convergence results for the different preconditioners in terms of
the number of non-linear Newton iterations, linear GMRES iterations and the executed
CPU time. All the preconditioners are computationally efficient for this case and con-
verged solutions can be obtained within 10 nonlinear steps although the number of grids
increases. Although the LU-SGS and ILU preconditioners require more storage require-
ment, they are several times more efficient than the block diagonal preconditioner.
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Table 1: Accuracy study for inviscid flow past a channel with a smooth bump.

Order Mesh L2 error L2 order
17×8×4 1.77E−03 —

DG, p=1 33×15×7 4.61E−04 1.94
65×29×13 1.17E−04 1.98

17×8×4 1.85E−04 —
DG, p=2 33×15×7 2.17E−05 3.09

65×29×13 2.49E−06 2.88

Table 2: Convergence results of the inviscid channel case (336 elements). nni: numbers of non-linear iterations,
nli: total numbers of linear iterations, time: total run time (min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 7 263 0.10 5 54 0.02 6 48 0.05
p=2 6 277 0.78 6 96 0.35 5 41 0.28

Table 3: Convergence results of the inviscid channel case (2688 elements). nni: numbers of non-linear iterations,
nli: total numbers of linear iterations, time: total run time (min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 7 515 1.40 7 151 0.52 6 72 0.40
p=2 6 399 8.57 6 126 3.27 5 66 3.23

Table 4: Convergence results of the inviscid channel case (21504 elements). nni: numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time (min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 8 778 16.78 9 247 6.70 8 169 8.83
p=2 8 881 142.88 6 215 43.70 6 126 65.10

4.2 Laminar flow past a flat plate

A laminar flow over an adiabatic flat plate is chosen to study the performance of the
different preconditioners when using JFNK-DG method. In this case, the free-stream
flow condition is given as Ma∞ = 0.5 and Re∞ = 100,000. The problem is solved using
a hierarchical basis on three successive refined grids with 960, 1920 and 3840 quadratic
elements, respectively. Fig. 1 shows a portion of the coarse grid and the corresponding
p = 2 solution of velocity components on this grid. The non-dimensional variables are
given as ux =u/u∞, vy =v×

√
Rex/u∞ versus η=y×

√
Rex/x.

Solutions of p= 1,2 are obtained, where the low-order converged solutions are used
as an initial guess of the higher-order computations. Tables 5-7 show the convergence re-
sults of the different preconditioners. It can be observed from the computational results
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Figure 1: Computational grid and solution of velocity profiles on coarse grid (960 elements, p=2 ) for laminar
flow past a flat plate.

that the block diagonal preconditioner is not efficient for this convection-dominated lam-
inar flow problem and the convergence results can’t be derived within 100 nonlinear
iterations on the medium and fine grids. The LU-SGS preconditioner performs notably
better than the block diagonal preconditioner for this laminar flow case, however it is sig-
nificantly inferior to the ILU preconditioner. Recall that the Reynolds number of this test
case is 100000, which means that the contribution of the convection term to the Jacobian
dominates. The LU-SGS preconditioners does not capture this contribution so well-hence
it gives a poorer approximation to the Jacobian than the ILU preconditioner.

4.3 Laminar flow past a sphere

A viscous flow past a sphere is considered in this case. The computation is performed at
a Mach number of 0.5 and Reynolds number of 118 based on the diameter of the sphere.

Table 5: Convergence results of the laminar flat plate case (960 elements). nni: numbers of non-linear iterations,
nli: total numbers of linear iterations, time: total run time (min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 45 7726 8.43 18 2062 2.43 13 150 0.27
p=2 30 4970 27.73 8 956 5.72 6 123 1.02

Table 6: Convergence results of the laminar flat plate case (1920 elements). nni: numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time(min). ”∗” denotes cases which did not
convergence in maximum nonlinear iterations.

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 * * * 29 4087 9.42 14 271 0.8
p=2 * * * 13 1887 23.01 8 184 3.1
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Figure 2: Computational grid and solution of streamlines on pressure contours for laminar flow past a sphere
(4216 elements, p=2).

This test case is chosen to demonstrate the robustness of the current solver in the com-
putation of viscous flows around a curved geometry. Since the model and flow is sym-
metric, we consider only half of the configuration. Fig. 2 shows a portion of the grid
with 4216 quadratic hexahedral elements and the corresponding p=2 solution of veloci-
ty streamlines on the pressure contours, which agrees well with the results in [33] using
Reconstructed Discontinuous Galerkin (RDG) method. Table 8 gives the convergence re-
sults for this case. Similar to the results of the flat plate case, the ILU0 preconditioner is
much more efficient than the other preconditioners, though the lower Reynolds number
in this example means the superiority over LU-SGS is a little less marked.

4.4 Subsonic flow past a Delta Wing

A laminar flow at a high angle of attack around a delta wing with a sharp leading edge
and a blunt trailing edge is considered. This is a benchmark in the 3rd international
workshop on high-order CFD methods [32] and the flow condition is given as Ma∞=0.3
and Re∞ = 4000 with an angle of attack α = 12.5◦. This case is chosen to compare the
performance of the Jacobian-Free method with the Jacobian based method in storage re-
quirement and computational efficiency. 7159 quadratic hexahedral elements are used
for computation and the ILU0 decomposition approach is adopted as the precondition-

Table 7: Convergence results of the laminar flat plate case (3840 elements). nni: numbers of non-linear
iterations, nli: total numbers of linear iterations, time: total run time (min). ”∗” denotes cases which did not
convergence in maximum nonlinear iterations.

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 * * * 33 4734 22.38 14 463 2.43
p=2 * * * 12 1709 41.08 8 386 8.51
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Table 8: Convergence results of the laminar flow past a sphere test case (4216 elements). nni: total numbers
of non-linear iterations, nli: numbers of linear iterations, time: total run time (min).

BD LU-SGS ILU
nni nli time nni nli time nni nli time

p=1 30 2135 13.5 19 866 5.95 13 249 2.25
p=2 63 4131 126.8 27 1581 53.4 16 746 23.01

Table 9: Memory requirements of different solvers for delta wing case (7159 elements).

Jacobian based (Mb) Jacobian free (Mb) Saving(%)
p=1 584.0 439.4 24.8%
p=2 2477.5 1573.8 36.5%

Table 10: Convergence results of different solvers for delta wing case (7159 elements). nni: total numbers of
non-linear iterations, nli: numbers of linear iterations, work units: normalized CPU time.

Jacobian based method Jacobian free method
nni nli work units nni nli work units

p=1 6 172 25.22 6 174 25.84
p=2 9 240 217.17 9 280 244.91

er. The memory saving achieved for different polynomial approximation is reported in
Table 9. It can be seen that a significant saving in storage is achieved with the JFNK-DG
method, which increases with the degree of polynomial approximation, from 24% for
p=1 to 36% for p=2, which demonstrates the superiority of the Jacobian-Free approach.

Table 10 gives the convergence results of both methods. The computational CPU time
is normalized by TauBench time, which is 10.75 seconds for this desktop computer. The
computed lift and drag coefficients of both methods with order p = 2 are Cl = 0.35456

and Cd = 0.16919, which is very close to the reference value of C
re f
l = 0.347 and C

re f
d =

0.17148 from the 3rd workshop. From the results it can be observed that compared with
the Jacobian base approach, the JFNK-DG method can substantially reduce the storage
requirement without significantly compromising accuracy and efficiency.

4.5 Subsonic flow past a DLR-F6 wing body transport configuration

A subsonic flow past a DLR-F6 wing body transport configuration is chosen to test the
reliability and robustness of the current JFNK-DG solver. The flow condition is given
as Ma∞ = 0.3 with an angle of attack α= 1◦. Solutions have been computed up to p= 3
polynomial approximation for this case on a grid with 33448 quadratic hexahedral ele-
ments. The total degrees of freedoms for different orders ranging from p=1 to p=3 are
668960, 1672400 and 3344800, respectively. ILU0 preconditioner is used for this case and
the resulting Mach number contours of order p=3 are illustrated in Fig. 3 which is con-
verged to a residual of 10−6. The computed lift and drag coefficients are Cl =0.52705 and
Cd=0.02386 for order p=3. Table 11 shows the convergence results in terms of the num-
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Figure 3: Solutions of Mach number contours for DRL-F6 wing body configuration (p=3).

ber of non-linear Newton iterations, linear GMRES iterations and the executed CPU time.
In order to speed up, a preconditioner-freezing approach is tested in this complex flow
case in which the preconditioner is re-evaluated every 5 nonlinear iterations. Since the
process of forming preconditioner is especially costly for DG method, the preconditioner-
freezing approach shows a great superiority for this case.

Table 11: Convergence results of the subsonic flow past a DLR-F6 wing body configuration (33448 elements).
nni: total numbers of non-linear iterations, nli: numbers of linear iterations, time: total run time (min).

without preconditioner–freezing preconditioner–freezing
nni nli time nni nli time

p=1 6 158 32.3 6 149 5.35
p=2 8 272 117.9 8 280 38.96

5 Conclusions

A fully implicit Jacobian-Free Newton-Krylov discontinuous Galerkin method has been
presented to solve the compressible Euler and Navier-Stokes equations on hexahedral
grids. Several preconditioners are investigated and compared in both storage require-
ment and computational efficiency in the framework of the JFNK-DG solver. A variety of
three dimensional test cases have been conducted to demonstrate the efficiency and ro-
bustness of the developed JFNK-DG solver. The contribution of this paper is to show that,
in comparison with with the Jacobian based method, the Jacobian-Free approach can sub-
stantially reduce the storage requirement without significantly compromising accuracy
and efficiency. Furthermore, our numerical experiments clearly demonstrate that, across
a wide range of test cases, the ILU0 preconditioner is a good choice considering both stor-
age requirement and computational efficiency, especially for complex flow simulations.
Finally, we note that current trends in computer hardware (e.g., many-core chips) sug-
gest that the cost of CPU cycles relative to memory capacity will decrease rapidly over
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the coming years. We suggest therefore that the importance of low memory algorithms
is likely to grow, even where this is at the expense of additional numerical operations.
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