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Abstract. Numerical investigation of multiple shock/turbulent flow interaction is car-
ried out using large eddy simulation for a supersonic channel flow with an inlet free
stream Mach number 1.61. Various fundamental mechanisms dictating the flow phe-
nomena including shock train, shear layer and turbulence behavior are investigated. It
is found that the existence of the shock train and separated shear layer has an impor-
tant influence on turbulence features. The turbulence intensities and turbulent kinetic
energy (TKE) are strengthened in the region of the multiple shock because of the un-
steadiness of the shocks. The investigation on the transport equations of the TKE and
the pressure fluctuation reveals that the multiple shock and the roll-up vortices of s-
hear layer can promote the generation of the TKE and the pressure fluctuation. The
unsteady behavior of flow field is further analyzed by means of the proper orthogonal
decomposition method. It is found that the multiple shock and the separated shear
layer dominate the unsteady feature.

AMS subject classifications: 76F65, 76L05, 76F70

Key words: Large eddy simulation, shock train, turbulent flow.

1 Introduction

The characteristics of shock wave/boundary layer interaction for the external flows have
been widely investigated [1–5]. Nevertheless, the multiple shock wave/boundary layer
interaction for the internal flows is more complicated. The shock train or pseudo-shock
structure will form in a variety of devices, such as the straight ducts, diffusers and noz-
zles [6]. The features of the shock train and multiple shock wave/boundary layer interac-
tion are mainly dependent on the incoming Mach number and the flow confinement [6].
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Based on previous studies [6–8], the interaction between normal shock and boundary
layer in the internal flow can be divided into four categories. When the incoming Mach
number is supersonic and less than 1.2, the strength of the shock is too weak to induce
the boundary layer separation. In this situation, the shock is straight and similar to an
inviscid normal shock. When the incoming Mach number increases to 1.2∼1.3, the shock
is enhanced to become curve, which is still similar to an inviscid shock. If the incoming
Mach number increases again, the shock becomes stronger and induces the boundary
layer separation. The separation in turn leads to the bifurcation of the shock. If the
incoming Mach number is greater than 1.5, more shocks occur and the shock strain forms.

If the separation caused by the first shock is strong enough, a low-frequency oscilla-
tion can be observed [7], which is similar to the breathing motion of the separation bubble
in the shock wave/boundary layer interaction [3]. For the shock train structure, the first
shock and following shocks all have oscillation phenomena and the oscillation amplitude
is enhanced with the increase of the incoming Mach number [7]. The mechanism relevan-
t to the oscillation is still unclear [7–11]. Ikui [7] conducted an experiment in a straight
pipe and analyzed the oscillation phenomena of the shocks with the small disturbances
upstream the shock. The following experiments [9,10] indicated that the oscillation is in-
duced by the upstream propagation of the pressure fluctuation along the subsonic region
in the downstream of duct. Sugiyama [11] also pointed out that the separation caused by
the first shock may be a reasonable explanation of the oscillation of shock train.

The investigation on the shock wave/boundary layer interaction of the internal flow
was first conducted for the purpose of designing the supersonic wind tunnels [12]. Then,
it is found that the shock train structure is different from the single shock wave/boundary
layer interaction [13, 14] and this problem is also studied by numerical simulation and
experiment [6]. Among these investigations, the experiments conducted by Carroll [15–
18] are prominent. The experiment utilized LDV to collet detailed turbulence statistics in
the flow field, which is chosen in this paper for validation.

The numerical simulations of the shock train problem are mainly conducted by means
of RANS. Early studies [18–21] used Baldwin-Lomax algebraic model, followed by simu-
lations [22,23] with k–ε model, while they all exhibited poor agreement with experimental
data. During recent years, some high-fidelity simulations are available [24–26]. Boles [24]
conducted a simulation of inlet/isolator configuration with the incoming Mach number
Ma=5. The hybrid large-eddy simulation (LES)/Reynolds average Navier-Stokes (RAN-
S) model is utilized and a bigger separation region and a stronger shock train structure
are observed with respect to experimental result. Koo [25] simulated the unstart process
of the inlet/isolator model and over-predicted the separation and the propagation ve-
locity of the unstart shock. Morgan [26] investigated the normal shock train using LES.
Although the Reynolds number is lower than that in the experiment, a good agreement of
the shock train structure and the quantitative results with experimental data is observed.
While for the situation with periodic condition in the spanwise, the position of the shock
train is relatively backward with respect to experimental result.

In this paper, an LES technique, which has provided a powerful tool for studying
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the dynamics of turbulent flows, is utilized to investigate the normal shock train in a
supersonic channel with a free stream Mach number 1.61. The purpose is to achieve an
improved understanding of some fundamental phenomena and statistical properties of
the internal flow. This paper is organized as follows. A description of the computational
model is presented in Section 2. Detailed results are then given in Section 3 and conclud-
ing remarks are addressed in Section 4.

2 Computational model

2.1 Mathematical formulation and numerical procedure

To investigate the internal flow inside a supersonic channel, the three-dimensional Favre-
filtered compressible Navier-Stokes equations in generalized coordinates are employed.
The equation of state for an ideal gas is used and the molecular viscosity is assumed
to obey the Sutherland law. The equations are non-dimensionalized by means of the
free stream variables, including the density ρ∞, temperature T∞, speed of sound a∞ and
characteristic scale δ which is the 99% velocity thickness of the inflow boundary layer.

The LES is implemented in the present work for turbulence closure. Some terms in
the Favre-filtered equations arise from unsolved scales and need to be modelled in terms
of resolved scales. Then, dynamic subgrid-scale models for compressible flows are em-
ployed. A detailed description of the mathematical formulation of the nondimensional-
ized equations and the subgrid-scale models can be found in our previous papers [27–30].

In this study, inflow boundary conditions are presented as follows. The inflow bound-
ary condition is handled using an artificially synthesized approach [31, 32] which is ex-
tensively tested in previous literatures [33, 34, 36]. The average inflow velocity profile is
generated from the results of RANS. The velocity disturbances at the inlet are determined
and the random velocity fluctuations with a maximum amplitude 4% of the free-stream
velocity are added to the velocity components [33–36].

2.2 Computational overview and validation

As shown in Fig. 1, a typical configuration is considered here with free-stream Mach
number Min = 1.61. The total pressure and total temperature at the inflow condition
are P0 = 206KPa and T0 = 295K, respectively. The 99% velocity thickness δ of the inflow
boundary layer is 5.4mm, which results in a confinement parameter (δ/h) of 0.32. The
unit Reynolds number based on the 99% velocity thickness is 1.62×105 [16].

To perform the numerical simulation, the computational domain is discretized by e-
qually spaced grids in the streamwise (x) and spanwise (y) directions and a stretched
grid in the wall-normal direction (z), so that there are enough points near the two walls
to capture the boundary layer information. Based on careful examination, the compu-
tational domain is used as −20≤ x ≤ 54 in the streamwise direction, 0≤ z ≤ 6.25 in the
vertical direction and −1.5≤ y≤1.5 in the spanwise direction. The coordinates x, y and
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Figure 1: Schematic of the channel model.
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Figure 2: Distributions of (a) mean streamwise velocity calculated by RANS and (b) van Driest transformed
mean streamwise velocity in the undisturbed incoming boundary layer. The experimental data comes from
Carroll et al. [16] and the LES result from Morgan et al. [26].

z are nondimensionalized by the velocity thickness δ of the inflow boundary layer. The
periodic condition is employed in the spanwise direction. The no-slip, adiabatic wall con-
dition is applied on the two walls. A boundary condition with a backpressure of 2.231p∞

is used at the exit of the channel [16], where p∞ is the inflow pressure. The details of the
grid resolution for the computational domain are shown in Table 1.

Based on the time-dependent resolved density ρ̄, pressure p̄, velocity components ũx,
ũy, ũz in the x, y and z directions, where a tilde denotes the Favre filter, several average
operations are introduced as follows. The symbol 〈φ〉 means the time average and spatial
average in the spanwise direction and {φ} = 〈ρ̄φ〉/〈ρ̄〉 with a variable φ. Then, their
fluctuations are obtained as ρ′= ρ̄−〈ρ̄〉, p′= p̄−〈 p̄〉 and u′′

i = ũi−{ũi}, respectively.

Fig. 2(a) shows the mean streamwise velocity distribution calculated by RANS, which
is used as the inflow condition. The experimental data is also plotted for comparison. It
is seen that the mean streamwise velocity is consistent with the experimental data [16].

Table 1: Details of grid resolution for computational domain.

grid
(

Nx×Ny×Nz
)

a∞∆t/D ∆z+

Grid 1 1001×81×201 0.0005 <1
Grid 2 801×61×181 0.0005 <1
Grid 3 501×41×121 0.001 <1
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Figure 3: Comparison between the calculated results and experimental data [16]: (a) the mean pressure on the
wall and (b) the mean Mach number along the centerline of the channel.
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Figure 4: The streamwise velocity distribution along the vertical direction at several streamwise locations,
x=0.8, 1.3, 2.6, 3.9, 5.3, 6.6, 8.1, 10.4, 26.2 and 35.5 from left column to right one. The symbol ◦ represents
the experimental data [16].

The van Driest transformed streamwise velocity for the undisturbed incoming boundary
layer just before the shock train is shown in Fig. 2(b). The curve exhibits a linear law
near the wall and obeys log-law in the logarithmic region. The LES result [26] and the
experimental data [16] are also plotted for comparison. The present result agrees well
with the experimental data in the logarithmic region. As a lower Reynolds number is
used in the LES study [26], the logarithmic region is shorter than our profile and the
curves coincide well with each other in the viscous sublayer.

Fig. 3 shows the distributions of the mean pressure on the wall and the mean Mach
number alone the centerline of the channel for comparison between numerical results
and experimental data [16]. It is seen that the calculated results agree reasonably with
the experimental data. To assess the effect of grid resolution and time step on the calcu-
lated results, three typical tests with different grid resolutions and time steps are listed
in Table 1. As shown in Fig. 3, the results for grids 1 and 2 are consistent with each oth-
er, indicating a reasonable convergence for the grid resolution and time step. To make
the prediction accurate, the results given below were calculated using the parameters for
grid 1 in Table 1. Furthermore, Fig. 4 shows the streamwise velocity profiles to quantita-
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tively compare with experimental data [16]. It is seen that the present calculated results
agree well with the experimental data. Furthermore, the present numerical strategy has
already been applied with success to a wide range of turbulent flows, such as compress-
ible flow over a circular and wavy cylinder [28] and past an aerofoil [29] and supersonic
flow opposing a jet from a blunt body [30].

3 Results and discussion

3.1 Statement of the flow field

The instantaneous flow structure inside the channel is shown in Fig. 5. The structure
contains a series of shocks, which is called a shock train [6]. The first shock is bifurcated
as a result of boundary layer separation and the following shocks exhibit nearly normal
ones. The bifurcated shock consists of a leading weak oblique shock, a nearly normal
outer shock and a trailing oblique shock with their intersecting at the bifurcation point,
which is consistent with experimental observation [16]. The separated shear layer rolls
up because of the vortical instability as the shear layer evolves downstream. Then, the
fully developed turbulence exists in the downstream and the flow field no longer contains
shock, where a region with adverse pressure gradient occurs as shown in Fig. 3(a) and
can be referred to as ”mixing region” [6].

The local flow structures based on the mean dilatation and mean local Mach number
are shown in Fig. 6, where the mean flow quantities are calculated by time average and
spatial average in the spanwise direction. As shown in Fig. 6(a), the shock structures are
clearly demonstrated for the first bifurcated shock and the following normal shocks. The
first shock creates an adverse pressure gradient, which in turn results in boundary layer
separation. The separated flow region causes the formation of the leading oblique shock.
The pressure has a rapid increase across the shock. As shown in Fig. 6(b), the Mach num-
ber decreases across the shock and a subsonic region exists behind the first shock. The
proximity of the walls limits the flow to be parallel to the wall. The flow converge caused
by the boundary layer separation induces the aerodynamic nozzle effect, which results in
the acceleration of subsonic flow in the core region. The boundary layer reattaches after
its separation and an expansion region forms to match the pressure difference.

Figure 5: Instantaneous flow structures in the channel. Here, the shock structures are illustrated by contours
of dilatation ϑ in grayscale. The background pattern is shown by contours of vorticity magnitude |ω|.
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Figure 6: Local flow structures in terms of (a) the mean dilatation and (b) the mean local Mach number Ma.
Here, solid lines denote Ma>1 and dashed lines Ma<1 with a contour increment 0.05.

3.2 Turbulence characteristics

3.2.1 Turbulence intensities and turbulent kinetic energy

Here, we mainly pay attention to the behaviors of turbulence intensities at differen-
t streamwise locations. The distributions of the normalized turbulence intensities are
shown in Fig. 7. The turbulence intensity components in the near-wall region are en-
hanced in the multiple shock region, such as at x=2.56, 3.5 and 6.91, compared with that
at x= 40 in Figs. 7(a)-(c). The streamwise component at x= 2.56 has the larger distribu-
tion in the core region of the channel due to the interaction of the first two shocks with
turbulent flow. Even though the streamwise turbulence intensity at x=40 is lower in the
near-wall region, it has a remarkable value in the core region. The spanwise and trans-
verse turbulence intensities become more significant in the downstream. Meanwhile, the
spanwise turbulence intensity at x=40 is larger, which is associated with the evolution of
vortical structures. As shown in Fig. 5, the spanwise vortical structures become unstable
and the streamwise vortices strengthen gradually, resulting in the enhancement of the
spanwise velocity fluctuation. Further, the transverse turbulence intensity at x=2.56 has
an obvious increase, which is related to the shock/boundary layer interaction.

The distributions of the normalized pressure fluctuation are also shown in Fig. 7(d).
The pressure fluctuation is significantly enhanced in the multiple shock region. This
behavior is consistent with the turbulence intensities. The profiles at x = 2.56 and 6.91,
corresponding to the first two shocks, exhibit a sharp increase in the core region because
the shock may enhance the pressure fluctuation.

The distributions of the specific turbulent kinetic energy (TKE) are shown in Fig. 8.
As noticed in the investigation of shock wave/boundary layer interaction [38], a spatial-
ly evolving turbulent compressible boundary layer exhibits a similarity with the incom-
pressible case. The turbulent kinetic energy for incompressible boundary layer obeys the
near-wall asymptotic behavior k ≃ Akz2 [39, 40], where Ak is a constant. Therefore, the
illustrated slope in Fig. 8 indicates that the present calculation can reliably simulate the
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Figure 7: The transverse distributions of turbulence intensities at several streamwise locations for the (a)
streamwise, (b) spanwise and (c) transverse turbulence intensity and (d) pressure fluctuation. The selected
streamwise locations are described as follows. The first shock locates at x=2.56 and the second one at x=6.91.
The position x=1 lies in front of the first shock, x=3.5 behind the first shock and x=40 in the downstream.
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Figure 8: The transverse distributions of the specific turbulent kinetic energy at several streamwise locations.
For details see Fig. 7.

turbulence behavior.

Further, as shown in Fig. 8, the TKE in the near-wall region has an obvious enhance-
ment in the multiple shock region. It is seen that the TKE has relatively high level at the
first shock location and the TKE at x=1 and 3.5 has a similar order to that at x=2.56. The
second shock at x=6.91 also makes a remarkable contribution to the TKE, which is some-
what smaller than the first one due to the weakening of the second shock. Moreover, the
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TKE in the core region exhibits relatively higher value in the downstream of the channel,
corresponding to the fully developed turbulence.

3.2.2 Budget terms in the turbulent kinetic energy transport equation

The budget terms in the TKE transport equation, which have been normalized based on
the free-stream quantities [41], are further discussed. Fig. 9 shows the transverse distri-
butions of the TKE production term. The production term at the first shock position has
a peak in the core region, corresponding to the TKE peak in Fig. 8. This indicates that the
unsteadiness of the shock can promote the TKE production. The production term also
has the local peaks for the downstream shocks, which decrease due to the weakening of
the shocks. The production term at x = 1 has a peak in the near-wall region, which is
related to the shearing effect induced by turbulent boundary layer. The peak shifts away
from the wall at x= 2.56, corresponding to the boundary layer separation. This behav-
ior indicates that the shearing effect has an important promotion to the TKE production.
Moreover, the production term at x=3.5 becomes negative, which is associated with the
expansion effect after the first shock.

Further, the TKE production term can be decomposed into two parts, which are relat-
ed to the compressing and shearing processes [42, 43],

Pd=−
1

3
〈ρ̄u′′

iu
′′

i〉
∂{ũj}

∂xj
, (3.1a)

Ps=−(〈ρ̄u′′
iu

′′
j〉−

1

3
〈ρ̄u′′

iu
′′

i〉δij)
∂{ũj}

∂xj
, (3.1b)

where Pd is the part due to the correlation between the dilatation and the isotropic com-
ponent of the Reynolds stresses and Ps is the part due to the correlation between the de-
formation strain and the anisotropic part of the Reynolds stresses. Fig. 10 shows the dis-
tribution of the TKE production terms due to the dilatation and shear contribution. The
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Figure 9: The transverse distributions of the TKE production at several streamwise locations. For details see
Fig. 7.
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Figure 10: Distribution of the TKE production terms: (a) dilatation production Pd; (b) shear production Ps.

Figure 11: Distribution of turbulent diffusion: (a) diffusion due to the triple velocity correlation; (b) diffusion
due to the pressure-velocity correlation.

dilatation production Pd has positive distribution in the compression region and negative
one in the expansion region [42, 43]. As shown in Fig. 10(a), the dilatation production Pd

is positive at the ramp of separation region, which results in an increase of the TKE. Then,
Pd is negative behind the first shock for the existence of the expansion waves, which leads
to a decrease of the TKE. The distribution of the shear production Ps is shown in Fig. 10(b).
The shear production Ps remarkably distributes in the regions where the shear layers and
the shocks occur. Even though the dilatation production Pd is enhanced by the shocks, it
remains smaller with respect to the shear production Ps. Therefore, the production is still
dominated by the shear production Ps.

The turbulent diffusion is further analyzed and can be divided into three part-
s, including the viscous effect D1 = 〈τ′′

iju
′′

i〉,j , the triple velocity correlation D2 =
−〈ρ̄u′′

iu
′′

iu
′′

j/2〉,j and the pressure-velocity correlation D3 = −〈ρ′ iu
′′

j〉,j [29]. Fig. 11
shows the distribution of the turbulent diffusion terms. The diffusion due to the vis-
cous effect mainly concentrates the near-wall region which is not shown here. Fig. 11(a)
shows the distribution of the turbulent diffusion due to the triple velocity correlation.
This part mainly concentrates in the regions where the shocks and separated shear layers
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Figure 12: Distribution of the turbulent dissipation rate: (a) solenoidal part, (b) dilatational part.

occur, which exhibits negative distribution in front of and behind the shock. As shown
in Fig. 11(b) for the pressure-velocity correlation, it mainly distributes in the region of
shocks, because the pressure and velocity have a remarkable change across the shocks
and the unsteadiness of the shocks also strengthens the pressure and velocity fluctua-
tions. Compared the D2 and D3 parts, it is identified that the turbulent diffusion is main-
ly dominated by the pressure-velocity correlation part and concentrates in the region of
shocks.

We further examine the turbulent dissipation rate ε, which can be separated into a
solenoidal part εs and a dilatational part εd [44, 56],

ε=εs+εd = 〈τ′′
iju

′′
i,j〉

=
〈 µ̃

Re
ω′′

iω
′′

i+2
µ̃

Re
(u′′

i,ju
′′

j,i−(u′′
i,i)

2
)
〉

+
4

3

〈 µ̃

Re
(u′′

i,i)
2
〉

, (3.2)

where ω′′
i denotes the fluctuating vorticity vector and µ̃ the molecular viscosity.

Here, Fig. 12 shows the solenoidal and the dilatational part of the turbulent dissi-
pation rate. The dilatation part εd in Fig. 12(a) is a pure compressibility effect [29] and
mainly concentrates in the multiple shock region. The solenoidal part εs in Fig. 12(b)
is largely independent of the compressibility [45] and mainly exists in the shear layer
region. Moreover, we can identify that the solenoidal part εs dominates the turbulent
dissipation, consistent with previous findings [29, 46]. This behavior indicates that the
separated shear layers and the vortical structures in the flow field play a dominant role
on the turbulent dissipation.

3.2.3 Production of the pressure fluctuation

From the preceding discussion, the pressure fluctuation is significantly generated in
the multiple shock region. Based on the transport equation of the pressure fluctuation

〈p′
2〉 [47, 48], we can have a deep insight into the understanding of the pressure fluctua-

tion production. Here the production term Pp f is mainly analyzed which is represented
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Figure 13: The transverse distributions of the production term of the pressure fluctuation equation at several
streamwise locations. For details see Fig. 7.

as [48]

Pp f =−2〈p′u′
i〉

∂〈 p̄〉

∂xi
−2γ〈p′

2
〉ϑ̃+2(γ−1)(〈p′τ′

ij〉〈Sij〉+〈p′S′
ij〉〈τij〉), (3.3)

where γ is the ratio of the specific heats, Sij = (∂ui/∂xj+∂uj/∂xi)/2 is the strain-rate

tensor, τij =2µ̃(Sij−ϑδij/3) is the viscous-stress tensor and ϑ̃=∂{ũi}/∂xi.
The transverse distribution of the production term Pp f is shown in Fig. 13. The pro-

duction of the pressure fluctuation at x = 2.56 varies smoothly for z < 1.5 and then has
a significant increase due to the interaction between the shock and separated boundary
layer. The profile at the second shock position exhibits a smooth variation owing to the
weaker interaction between the shock and boundary layer. In addition, the production in
the core region has a larger peak at the first shock position and decreases for the following
shocks due to the weakening of these shocks. Moreover, the profile of the production be-
hind the first shock at x=3.5 is similar to that in the downstream at x=40. This behavior
indicates that the unsteadiness of the shocks can strengthen the pressure fluctuation.

3.3 Feature of the shear layer evolution

The shear layer evolution has a remarkable influence on the production and diffusion of
the turbulence and on the unsteady feature of the flow field. Thus, the features of the
shear layer evolution are further investigated in order to get into the understanding of
the flow behaviors.

To identify the shear layer, the contour of the turbulent shear stress τ′′
xz = {u′′

xu′′
z}

is shown in Fig. 14. The shear layer near the lower wall is typically analyzed. It is seen
that the τ′′

xz mainly occurs in the boundary layer region. For the purpose of better under-
standing the shear layer evolution, the location of the shear layer is determined in terms
of local peak of the shear stress magnitude [30, 49, 50], which is exhibited by the dashed
line marked in Fig. 14.
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Figure 14: Distribution of the turbulent shear stress τ′′
xz. Here the black dashed line is the location of the

local peak shear stress magnitude which can be used to denote the shear layer location.

Fig. 15 shows the distribution of the mean dilatation ϑ and the streamwise gradient of
mean entropy along the centerline of the channel and the shear layer marked in Fig. 14,
respectively. The entropy increases across the shock, achieves its maximum at the shock
position and then decreases behind the shock. In comparison with other variables such as
the density, pressure, velocity and temperature in the flow field, the streamwise gradient
of entropy can be used to distinguish the shock position. On the other hand, the velocity
gradient also exhibits a sharp change across the shock. Therefore, the distribution of the
dilatation can be also utilized as the identification of the shock.

As shown in Fig. 15(a), the distribution of the mean dilatation along the centerline
exhibits its negative peak at the first four shock positions. Correspondingly, the stream-
wise gradient of entropy along the centerline also shows its peak. The positions for the
first four shocks can be determined as approximately x= 2.56, 6.91, 9.76 and 12, respec-
tively. From Fig. 15(b), the distributions of the dilatation and the streamwise gradient
of entropy along the shear layer have the similar behavior to those along the centerline.
Meanwhile, the dilatation along the shear layer has two adjacent negative peaks, which
locate at x=0.55 and 2.81, respectively, corresponding to the two bifurcated ends of the
first shock. The steamwise gradient of entropy also exhibits two peaks. Owing to the
weakening of the following shocks, the streamwise gradient of entropy has no longer
obvious peaks in the downstream.

The distributions of the TKE and pressure fluctuation along the shear layer are shown
in Fig. 16. The first two peaks of the TKE along the shear layer in Fig. 16(a) locate at
x=0.55 and 2.81, which are related to the interaction between the bifurcated ends of the
first shock and the shear layer. The TKE enhancement is caused by the unsteadiness of
the separated shear layer and multiple shock. Because of the weakening of the following
shocks, the TKE keeps decaying along the shear layer. The distribution of TKE along the
centerline is also plotted in Fig. 16(a) for comparison. The TKE has two obvious peaks
at the first two shocks and exhibits relatively lower level at other shock positions. In
addition, the TKE along the centerline is obviously lower compared with that along the
shear layer. The distribution of the pressure fluctuation p′rms along the shear layer and
the centerline is shown in Fig. 16(b). The pressure fluctuation along the shear layer has a
sharp increase owing to the shear layer separation, increases gradually in the shock train
region and then decreases slightly in the downstream. The pressure fluctuation along the
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Figure 15: The distributions of the mean dilatation and the streamwise gradient of entropy along (a) the
centerline and (b) the shear layer.

x

k

-10 0 10 20 30 40 500

0.01

0.02

0.03

0.04

0.05(a)
Shear layer
Centerline

x

p′
rm

s

-10 0 10 20 30 40 500

0.05

0.1

0.15

0.2(b)

Figure 16: The distributions of (a) the TKE and (b) the pressure fluctuation p′rms along the centerline of the
channel and the shear layer.

centerline has the similar level to that along the shear layer and its peaks can be observed
at the multiple shock position.

3.4 Unsteady property of flow structures

The flow structures including the multiple shock and the separated shear layer play an
important role in the statistical properties of the flow field. Further, the unsteady proper-
ty of these flow structures is investigated in terms of the power spectral analysis and the
proper orthogonal decomposition (POD) method.

The pressure power spectral analysis in the turbulent flow is helpful for the under-
standing of the turbulence structures [51–53]. Fig. 17 exhibits the distributions of the
pressure power spectral density (PSD) at three typical probes. As shown in Fig. 17(a), the
PSD at the first probe has a peak at St= 0.0124, which corresponds to the oscillation of
the second shock. There exist other two peaks at St=0.0309 and 0.0433. Then, the dom-
inant frequency for the second probe in Fig. 17(b) is St= 0.0309. Further, the dominant
frequency for the third probe in Fig. 17(c) also exhibits St = 0.0309, which corresponds
to the roll-up vortices of the shear layer. Meanwhile, another peak at St= 0.0433 occurs
due to the linear combination of St=0.0124 and 0.0309, which is reasonably related to the
interaction between the shock and shear layer.

The pressure field can be quantitatively analyzed using the POD method [54] to ex-
tract energetic coherent structures from the simulation data. For a given pressure field
p(x,t), the POD analysis can determine a set of orthogonal functions φj(x), j=1,2,··· , so
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Figure 17: Profiles of the pressure PSD at three probes: (a) the first probe locates at (6.5,3.125) just in front
of the second shock along the centerline, (b) the second one at (11,3.125) between the third and the fourth
shocks and (c) the third one at (11,1), where the fourth shock interacts with the shear layer.

that projection of p on to the first n functions,

p̂(x,t)= p̄(x,t)+
n

∑
j=1

aj (t)φj(x), (3.4)

has the smallest error, defined as 〈‖p− p̂‖2〉t, where 〈·〉t and ‖·‖ denote the time average
and a norm in the L2 space, respectively. Here, aj (t) represents the temporal variation of
the jth mode.

The analysis has been conducted using Nt = 3000 snapshots of the pressure field,
which span a time period of 150δ/U∞ with the temporal resolution of 0.05δ/U∞. The
energy of the jth mode Ej is defined as

Ej=
〈

∥

∥aj (t)φj(x)
∥

∥

2
〉

t
. (3.5)

The normalized energy of the mth mode is then defined as Em/∑
Nt
j=1 Ej and the energy

sum from mode 1 through to mode m is solved as ∑
m
j=1 Ej/∑

Nt
j=1 Ej. Using the time-varying

coefficient aj (t) in (3.4), one can obtain the frequency spectrum of the jth mode [29, 55].
Fig. 18 shows the shape distributions and the corresponding frequency spectra for

the first three modes. The pressure fluctuation for the first mode in Fig. 18(a) exhibit-
s alternating patterns of positive and negative pressure fluctuation near the wall, which
corresponds to the roll-up vortices of the shear layer. Obvious fluctuation is also observed
in the regions where the shocks occur. As shown in Figs. 18(b) and 18(c) for the second
and third modes, the pressure fluctuation mainly concentrates in the multiple shock re-
gion, which is related to the oscillation of the shocks. From the time-varying coefficient of
mode 1, the dominant frequency is approximately St=0.0309, which corresponds to the
frequency of the roll-up vortices of the shear layer. Meanwhile, the dominant frequency
of modes 2 and 3 is approximately St = 0.0124, which is consistent with the frequency
of the shock oscillation. Further, as shown in Fig. 19(a), the first three modes occupy
10.4%, 9.6% and 8.5%, respectively. The total energy of the first three mode occupies
28.5% in Fig. 19(b). Based on the POD analysis, the dominant coherent structures related
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energy and (b) cumulative energy.

to the pressure fluctuation are reasonably determined and the dominant frequencies for
the multiple shock and the shear layer evolution are identified.

4 Concluding remarks

Multiple shock/turbulent flow interaction in a supersonic channel has been studied by
means of an LES technique for the inlet free-stream Mach number Min=1.61 and the unit
Reynolds number 1.62×105 based on the 99% velocity thickness. Various fundamental
mechanisms dictating the complex flow phenomena including shock train, shear layer
and turbulence behavior are examined in detail and are summarized briefly as follows.

The shock train or multiple shock structure is reliably simulated. The typical flow
structures in the flow field include multiple shock, separated shear layer and multiple
shock/turbulent flow interaction. Due to the existence of the multiple shock, an obvious
increase of the pressure on the wall occurs in the multiple shock region and a decrease
of the Mach number along the centerline appears. The existence of the multiple shock
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and separated shear layer has a significant influence on the turbulence features. It is
found that the turbulence intensities and the TKE are enhanced by the unsteadiness of
the shocks and weakened in the downstream of the channel. The unsteadiness of the
shocks also strengthens the pressure fluctuation. Moreover, the pressure-velocity corre-
lation plays a dominant role in the turbulence diffusion and mainly concentrates in the
multiple shock region. The separated shear layer has a major contribution to the tur-
bulence dissipation. The analysis on the transport equation of the pressure fluctuation
reveals that the multiple shock mainly induces the pressure fluctuation. The unsteady
behavior of the flow field is further investigated. It is found that the multiple shock and
the separated shear layer dominate the unsteady features of the flow field.
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