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Abstract. This paper focuses on the development and application of a three-
dimensional gas-kinetic Bhatnagar-Gross-Krook (BGK) method for the viscous flows
in rotating machinery. For such flows, a rotating frame of reference is usually used
in formulating the Navier-Stokes (N-S) equations, and there are two major concerns
in constructing the corresponding BGK model. One is the change of the convective
velocities in the N-S equations, which can be reflected through modification of the gas
streaming velocity. The other one is the necessity to account for the effect of the addi-
tional Coriolis and centrifugal forces. Here, a specifically-designed acceleration term
is added into the modified Boltzmann equation so that the source effects can be natu-
rally included into the gas evolution process and the resulted fluxes. Under the finite-
volume framework, the constructed BGK model is locally solved at each cell interface
and then the numerical fluxes can be evaluated. When employing the BGK scheme, it
is sometimes found that the calculated spatial derivatives of the initial and equilibrium
distribution functions are sensitive to the mesh quality especially in complex rotating
flow applications, which may significantly influence flux evaluation. Therefore, an im-
proved approach for computing these slopes is adopted, through which the modeling
capability for viscous flows is enhanced. For validation, several numerical examples
are presented. The computed results show that the present method can be well applied
to a wide range of flows in rotating machinery with favorable accuracy.

AMS subject classifications: 76U05
Key words: Gas-kinetic scheme, BGK model, non-inertial reference frame, acceleration term, ro-
tating machinery.

1 Introduction

The study of flows in rotating machinery has been an attractive and challenging issue.
Examples of such flows cover a wide range of scientific and engineering applications [1],
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such as rotating Couette flow, rotating cavity flow, and turbomachinery flow. There are
significant differences between rotating and non-rotating fluid applications. The first one
is the presence of centrifugal and Coriolis forces in a rotating flow, which could be respon-
sible for the possible differences in dynamics and aerodynamic performance. Secondly,
the complex secondary flow pattern appearing in rotating machinery can be another dis-
tinction. It is caused by the combined effects of boundary layer formation, wake interac-
tions and rotation. For example, many types of secondary flows occur in turbomachinery,
including tip leakage, passage vortex, and corner vortex. Besides, in some cases the ef-
fect of flow rotation may lead to complex toroidal vortices and even flow instabilities. A
notable example is the Taylor-Couette flow, where axisymmetric and non-axisymmetric
instabilities appear when the characteristic angular velocity is increased above certain
thresholds. These distinguishing features all increase the difficulty of accurate modeling
of flows in rotating machinery and thus set a higher demand for numerical methods.

Currently, most computational fluid dynamics (CFD) computations are based on solv-
ing Navier-Stokes equations. Under the finite-volume framework, the inviscid fluxes are
usually evaluated using upwind schemes, while the viscous fluxes are evaluated em-
ploying central differences. Typical upwind schemes include flux difference splitting
(FDS)-type and flux vector splitting (FVS)-type schemes, which are both derived from
the discretization of the Euler equations. However, practice has shown that the compu-
tational accuracy and robustness may vary depending on the selected numerical scheme,
especially in boundary layer and shock structure calculations. Furthermore, numerical
instabilities are sometimes encountered, such as the carbuncle phenomena and odd-even
decoupling. These difficulties may be further enhanced in simulating rotating flows,
probably causing significant impact to performance calculation and prediction of sec-
ondary flow pattern. Generally, we can attribute them to the excessive or insufficient
numerical dissipation, which is implicitly provided in the scheme but does not meet the
requirement in various flow regions. There are, however, more physical reasons to ex-
plain this. It is demonstrated in [2] that due to the difference between physical and
numerical fluid, the Euler equations may not be an appropriate physical model to de-
scribe the time evolution of numerical fluid in all situations. Also because most upwind
schemes use quasi-one-dimensional approaches, they may show quite different behav-
iors in multidimensional cases [3].

In the recent decade, there has been a growing interest in constructing schemes based
on the Boltzmann equation since it has a more fundamental physical basis. The gas-
kinetic BGK scheme (BGK), which was first proposed by K. H. Prendergast and K. Xu [4],
is probably one of the most popular Boltzmann-type methods. Because of its many mer-
its such as the multidimensionality, the delicate dissipative mechanism and the positive
property, the BGK scheme can give accurate and robust N-S solutions. Particularly in
the discontinuous regions, it has proven to be capable of capturing a crisp and stable
shock structure [5]. With efforts of scholars, many useful BGK schemes have been devel-
oped for a wide variety of flows, as reported in [6–10]. As for rotating fluid applications
concerned in this work, it also shows great potential in improving flow simulation.
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It is an usual way to express the governing N-S equations in a rotating frame of ref-
erence. Because the rotating system is not inertial, additional centrifugal and Coriolis
forces exist, serving as macroscopic source terms. In conventional N-S solvers, the source
effects are usually neglected in the evaluation of numerical fluxes. As a contrast, in BGK
schemes, they should be accounted for in the construction of the BGK model, because
only with an appropriate gas evolution model can the concerned N-S equations be re-
covered. This is also a necessary basis of the present method. Since the numerical fluxes
at the cell interface are obtained by reconstructing the solution of the BGK model, the
source effects are naturally included in the resulted fluxes. Note that the importance of
including source terms into the gas evolution process has also been demonstrated by
Xu [11] in developing a BGK scheme for heat transfer problems. Recently, for simulating
two-dimensional viscous flows around arbitrarily moving bodies, the authors developed
a moving reference frame-based BGK scheme (MRF-BGK) [12], where the non-inertial ef-
fects are considered by adding a particle acceleration term into the Boltzmann equation.
With the Chapman-Enskog expansion analysis, it was proven that the developed BGK
model correctly recovers the N-S equations in a general moving frame of reference. Here,
we follow the same idea and extend it for three-dimensional rotating flows.

Accurate modeling of viscous effects is extremely crucial to rotating flows, because
there are usually several secondary flows superposed on the mainstream flow and any
deviation in ”predicted” viscous forces may lead to entirely different flow patterns. As
analyzed in [13], the viscous part of fluxes in the BGK scheme is contributed by a nonlin-
ear average of spatial derivatives of the initial non-equilibrium state and the equilibrium
state. Therefore, the gradients of flow variables should be obtained both at the cell in-
terface and in left and right cells. Note that many scholars [5, 13–15] employ a more
general way to approximate the equilibrium state so that the gradients on either side of
the cell interface are required. Originally they were all calculated using a simple differ-
ence approximation, and there are two consequences of this. First, it may be inefficient
to deal with non-Cartesian mesh, thus a coordinate transformation approach [16] or a
modified approach proposed in [13] have to be employed. Secondly, it is found that this
way sometimes leads to unphysical results and even numerical instabilities. The reason
is that the computed gradients could be strongly sensitive to the mesh quality, or more
specifically, the distance between the cell centers and the distance between the cell cen-
ter and the cell interface. This problem can be more severe in rotating fluid applications
such as in turbomachinery, because the computational domain is usually a narrow and
warped passage where several highly distorted meshes exist. To remove this problem
and meanwhile maintain the multidimensionality of the BGK scheme, an efficient ap-
proach for computing the derivatives of the initial and equilibrium states is adopted. It
is also worth mentioning that Xu et al. [17] and his collaborators [18,19] did a lot of work
for the development of an intrinsically multidimensional BGK scheme, where the basic
idea is to include both normal and tangential gradients in the flux evaluation.

This paper is organized as follows. First we introduce the construction of the BGK
model for the N-S equations in a rotating reference frame. Then the solving process for
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the developed BGK model is presented in detail. In particular, the calculations of the
spatial derivatives of initial and equilibrium states by using an improved approach are
addressed. Finally, several numerical examples are used for validation.

2 Methodology

2.1 Construction of the BGK model for the N-S equations in a rotating
reference frame

Owing to the unsteady nature of rotating flows as seen by a stationary observer, it is a
convenient way to use a rotating frame of reference, through which the flow motion can
be thought as predominantly steady relative to the rotating bodies. The angular velocities
are assumed to have a general expression, i.e., ω=ωrrot, where rrot = [rx,ry,rz]

T denotes
a unit vector in the direction of the rotation axis. Due to the reasons explained in [20],
it is preferred to use the absolute velocity formulation to express both the macroscopic
equations and the Boltzmann equation. Since the present BGK scheme is designed to
solve the N-S equations formulated in a rotating reference frame, they are first given as

∂ρ

∂t
+∇·(ρvr)=0, (2.1a)

∂ρv
∂t

+∇·(ρvvr+pI)−∇· ¯̄τ=−ρ(ω×v), (2.1b)

∂ρE
∂t

+∇·(ρEvr+pv)−∇·(k∇T+ ¯̄τ ·v)=0, (2.1c)

where ρ, p, T, E, and k are the density, pressure, temperature, total energy per unit mass
and thermal conductivity coefficient, respectively. The absolute velocity vector v and
the relative velocity vector vr have the components v=[u,v,w]T and vr =[ur,vr,wr]

T, I is
the identity matrix, and ¯̄τ is the viscous stress tensor. It is noted that in the momentum
equations, the Coriolis and centrifugal forces have been simplified into a single term,
acting as an external source.

By using the finite volume method, an integral form of Eq. (2.1) for a particular vol-
ume Ω gives

Ω
dW
dt

=−
NF

∑
m=1

(F∆S)m+ΩQ, (2.2)

where NF=6 for structured mesh, ∆Sm is the area of face m, W=[ρ,ρv,ρE]T is the conser-
vative variables defined at the cell center, Fm represents the total fluxes defined at the cell
interface, and Q is the macroscopic source term.

As compared with the original BGK model, there are two major concerns in construct-
ing the BGK model for the above macroscopic equations. The first one is to modify the
gas streaming velocity in the Boltzmann equation since the convective velocities have
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changed from v to vr as shown in Eq. (2.1). The other one is to account for the source
effects in the constructed BGK model. Here, by introducing a particle acceleration term
into the modified Boltzmann equation, we have

∂ f
∂t

+ξ′ ·∇ f +aξ ·∇ξ f =− 1
τ
( f−g), (2.3)

where f is the gas distribution function, g is the equilibrium distribution function, τ is the
particle collision time, ξ′= [ξx

′,ξy
′,ξz
′]

T is a vector of the modified streaming velocities,
and aξ=[aξ,x,aξ,y,aξ,z]

T is a vector of the particle accelerations. The notation∇ξ represents
the gradient of a scalar with respect to the vector of particle velocities ξ=[ξx,ξy,ξz]

T. The
streaming velocities ξx

′, ξy
′ and ξz

′ are respectively defined as ξx
′= ξx−ue, ξy

′= ξy−ve
and ξz

′=ξz−we, and ue, ve and we are components of the vector of entrainment velocities
ve = v−vr. The particle accelerations aξ,x, aξ,y and aξ,z will be determined later. Both f
and g are functions of space x=(x,y,z), time t, particle velocities (ξx,ξy,ξz) and internal
variables ζi, (i=1,2,··· ,N). The equilibrium state g is usually defined as a Maxwellian

g=ρ

(
λ

π

) N+3
2

e−λ((ξx−u)2+(ξy−v)2+(ξz−w)2+ζ2),

where λ=ρ/2p, ζ2=ζiζi. The internal degrees of freedom N equals to 2 for diatomic gas.
In order to ensure that the BGK model (Eq. (2.3)) recovers the concerned N-S equa-

tions (Eq. (2.1)), from the Chapman-Enskog expansion analysis, the accelerations should
be designed to satisfy the following equations

−
∫
(aξ ·∇ξ f )ϕdΞ=[0,−ρ(ω×v),0]T, (2.4)

where the notation dΞ=dξxdξydξzdζ1dζ2 ···dζN has been used, and ϕ is the vector of the
collision invariants

ϕ=

[
1,ξx,ξy,ξz,

1
2
(ξ2

x+ξ2
y+ξ2

z+ζ2)

]T

.

According to the theory of statistics, when ξx,ξy,ξz,ζi→±∞, the distribution functions
f ,g→0 and both f and g are higher order infinitesimals. Therefore, two important inte-
gration relations are obtained, e.g., for the acceleration aξ,x∫

aξ,x
∂ f
∂ξx

ϕdΞ=
∫

∂aξ,x fϕ
∂ξx

dΞ−
∫

∂aξ,xϕ

∂ξx
f dΞ=−

∫
∂aξ,xϕ

∂ξx
f dΞ, (2.5a)∫

aξ,x
∂g
∂ξx

ϕdΞ=
∫

∂aξ,xgϕ

∂ξx
dΞ−

∫
∂aξ,xϕ

∂ξx
gdΞ=−

∫
∂aξ,xϕ

∂ξx
gdΞ. (2.5b)

The same holds for the other two accelerations aξ,y and aξ,z. With these relations, Eq. (2.4)
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becomes (written in components)∫
(∇ξ ·aξ) f dΞ=0, (2.6a)∫
[ξx(∇ξ ·aξ)+aξ,x] f dΞ=ρ(ryw−rzv), (2.6b)∫
[ξy(∇ξ ·aξ)+aξ,y] f dΞ=ρ(rzu−rxw), (2.6c)∫
[ξz(∇ξ ·aξ)+aξ,z] f dΞ=ρ(rxv−ryu), (2.6d)∫ [1

2
(ξ2

x+ξ2
y+ξ2

z)(∇ξ ·aξ)+ξ ·aξ

]
f dΞ=0, (2.6e)

where the notation

∇ξ ·aξ =
∂aξ,x

∂ξx
+

∂aξ,y

∂ξy
+

∂aξ,z

∂ξz

has been used. It is seen from Eq. (2.6) that there is not only one choice for determining
aξ,x, aξ,y and aξ,z. Here, we directly give an alternative and simple one

aξ,x =ω(rzξy−ryξz), (2.7a)
aξ,y =ω(rxξz−rzξx), (2.7b)

aξ,z =ω(ryξx−rxξy), (2.7c)

where rx, ry and rz are constants. It can be proven that with the above definition of aξ ,
the connection between Eqs. (2.1) and (2.3) is built, where the compatibility condition
between f and g needs to be used ∫

( f−g)ϕdΞ=0. (2.8)

2.2 Solution of the modified Boltzmann equation

As the governing equation, the modified Boltzmann equation is solved at each cell inter-
face for a second-order solution f (x,t,ξ,ζ), from which the numerical fluxes can be evalu-
ated. In the following, we take the i-direction face xi+1/2,j,k =(xi+1/2,j,k,yi+1/2,j,k,zi+1/2,j,k)
as an example. Unless otherwise stated, the subscripts j and k will be both omitted. For
convenience, the x-direction is assumed to be the normal direction to the local cell in-
terface and the y-direction and z-direction are the other two tangential directions. The
generalized solution of Eq. (2.3) at the cell interface xi+1/2 and at time t can be written as

f (xi+1/2,t,ξ,ζ)=
1
τ

∫ t

0
e−(t−t′)/τg(x(t′),t′,ξ,ζ)dt′+e−t/τ f0(x(0),ξ,ζ), (2.9)

where ξ(t′)=ξ(t)−(t−t′)aξ and x(t′)=xi+1/2−ξ′(t−t′)− 1
2 aξ(t−t′)2 are the velocity and

trajectory of a particle motion with t′ ∈ [0,t], due to the non-inertial forces. Because the
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term − 1
2 aξ(t−t′)2 has only a higher-order effect, it can be ignored. The integral solution

f describes a dynamic process of gas evolution, starting with an initial gas distribution
function f0 and approaching the equilibrium state g. In the next, we will demonstrate
how to evaluate f0 and g, respectively. For simplicity, the location of the cell interface is
assumed to be xi+1/2=(0,0,0).

2.2.1 The initial state f0

In order to develop a multidimensional BGK scheme, f0 can be constructed as

f0=g−(ξ′ ·∇g)t−(aξ ·∇ξ g)t−τ

(
∂g
∂t

+∇g·ξ′+aξ ·∇ξ g
)

=

{
gl [1−(al ·ξ′)t−τ(Al+al ·ξ′)

]
−(t+τ)(aξ ·∇ξ gl), x<0⇔ ξ ′x >0,

gr [1−(ar ·ξ′)t−τ(Ar+ar ·ξ′)
]
−(t+τ)(aξ ·∇ξ gr), x≥0⇔ ξ ′x≤0,

(2.10a)

where gl and gr are local Maxwellians at the left and right sides of the cell interface,
al(r) = [al(r),bl(r),cl(r)] and Al(r) are related to derivatives of gl(r) in space and time. All
the terms involving τ denote the non-equilibrium parts in f0, including the additional
acceleration term. As shown previously, the equilibrium states gl(r) are obtained from the
reconstructed macroscopic flow variables at both sides of the cell interface, i.e., Wl and
Wr. The slopes al(r), bl(r) and cl(r) are evaluated as follows. For example, when taking the

derivatives of gl in the normal direction, i.e., when expanding ∂gl

∂x = al gl , it is found that
al can be expressed as a linear combination of the collision invariants ϕα, (α=1∼5). The
same holds for the other slopes and therefore

al(r)= al(r)
α ϕα, (2.11a)

bl(r)=bl(r)
α ϕα, (2.11b)

cl(r)= cl(r)
α ϕα. (2.11c)

All the unknown coefficients al(r)
α , bl(r)

α and cl(r)
α are local constants related to macroscopic

variables and their gradients. We can directly obtain these coefficients by using the chain
rule for the Maxwellian distribution function (see Appendix), however, a more efficient
way is to evaluate them implicitly. According to the conservation forms of moments
W=

∫
gϕdΞ and noticing that dΞ is independent of x, y and z, we get∫

gl(r)al(r)
α ϕαϕdΞ=

(
∂W
∂x

)l(r)

, (2.12a)

∫
gl(r)bl(r)

α ϕαϕdΞ=

(
∂W
∂y

)l(r)

, (2.12b)

∫
gl(r)cl(r)

α ϕαϕdΞ=

(
∂W
∂z

)l(r)

, (2.12c)
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where the terms on the right side represent the gradients of the (reconstructed) conserva-
tive variables around the cell interface. By solving the above linear systems, all the slopes
are obtained, which are consistent with those shown in Appendix. The calculations for
Wl(r) and the derivatives will be presented in Section 2.3. The parameters Al(r) can be
similarly expressed as

Al(r)=Al(r)
α ϕα. (2.13)

Then considering the fact that the non-equilibrium parts in f0 have no direct contribu-
tions to conservative variables, i.e.,∫

τ
[

g(Al(r)+al(r) ·ξ′)+aξ ·∇ξ gl(r)
]
ϕdΞ=0, (2.14)

we further have∫
gAl(r)

α ϕαϕdΞ=−
∫

g(al(r) ·ξ′)ϕdΞ−
∫
(aξ ·∇ξ gl(r))ϕdΞ. (2.15)

The first term on the right side of the above equation can be easily obtained since all the
slopes are known. The second term can be calculated from Eqs. (2.5) and (2.7), i.e.,∫

(aξ ·∇ξ gl(r))ϕdΞ=
[
0,ρl(r)(ω×vl(r)),0

]T
. (2.16)

By solving two linear systems (Eq. (2.15)), Al and Ar are both determined.

2.2.2 The equilibrium state g

Different from most existing work, the equilibrium state g around the cell interface and
time t=0 is constructed as a more general formulation with consideration of the possible
discontinuities of tangential gradients at the cell interface

g= g0

{
1+ Āt′−[H(ξ ′x)(ā

l ·ξ′)+(1−H(ξ ′x))(ā
r ·ξ′)](t−t′)

}
−(aξ ·∇ξ g0)(t−t′), (2.17)

where H(ξ ′x) is the Heaviside function. The parameters āl(r)=[āl(r),b̄l(r), c̄l(r)] and Ā are
related to derivatives of g0 in space and time. The equilibrium state g0 (at time t= 0) is
also a Maxwellian

g0= ρ̄

(
λ̄

π

) N+3
2

e−λ̄((ξx−ū)2+(ξy−v̄)2+(ξz−w̄)2+ζ2),

where the unknown macroscopic variables ρ̄, λ̄, ū, v̄ and w̄ in g0 can be obtained by taking
the limits of x→(0,0,0) and t→0 in Eqs. (2.9) and (2.10) and using Eq. (2.14), which gives

W̄=
∫

g0ϕdΞ=
∫
[H(ξ ′x)gl+(1−H(ξ ′x))gr]ϕdΞ, (2.18)
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where W̄ is defined as the ”average” of conservative variables at the cell interface. In the
above equation, the integrations for ξx = ξ ′x+ue are done in two non-symmetric velocity
spaces. With such bounded integration limits, the moments of the Maxwellian distribu-
tion function for ξn

x , (n=0,1,2,···) can be simply obtained by using the error function and
the complementary error function. In order to determine āl(r), b̄l(r) and c̄l(r), expanding
them as

āl(r)= āl(r)
α ϕα, (2.19a)

b̄l(r)= b̄l(r)
α ϕα, (2.19b)

c̄l(r)= c̄l(r)
α ϕα. (2.19c)

The coefficients āl(r)
α , b̄l(r)

α and c̄l(r)
α are obtained from the following equations

∫
g0 āl(r)

α ϕαϕdΞ=

(
∂W̄
∂x

)l(r)

, (2.20a)

∫
g0b̄l(r)

α ϕαϕdΞ=

(
∂W̄
∂y

)l(r)

, (2.20b)

∫
g0c̄l(r)

α ϕαϕdΞ=

(
∂W̄
∂z

)l(r)

, (2.20c)

where the terms on the right side represent the gradients of W̄ around the cell interface.
The calculations for them will be together discussed in Section 2.3.

2.2.3 The expressions of the solution f and time-average fluxes

With the above definitions of f0 and g, according to Eq. (2.9), the solution f of the con-
structed BGK model can be written as

f (xi+1/2,t,ξ,ζ)

=γ1g0+γ2Āg0+γ3

[
H(ξ ′x)g0(āl ·ξ′) + (1−H(ξ ′x))g0(ār ·ξ′)+aξ ·∇ξ g0

]
+γ4

[
H(ξ ′x)gl(1−τAl)+(1−H(ξ ′x)gr(1−τAr)

]
+γ5

[
H(ξ ′x)((a

l ·ξ′)gl+aξ ·∇ξ gl)+(1−H(ξ ′x))((a
r ·ξ′)gr+aξ ·∇ξ gr)

]
(2.21)

with the coefficients γ1,γ2,··· ,γ5 defined as

γ1=1−e−t/τ, γ2= t−τ(1−e−t/τ), γ3= t−(t+τ)(1−e−t/τ),

γ4= e−t/τ, γ5=−(t+τ)e−t/τ.

Due to the presence of ∇ξ g, it is difficult to construct the acceleration term (aξ ·∇ξ g), let
alone explicitly gain the values of f0, g and f . Fortunately, the finite volume BGK method
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actually focuses on the evaluation of the numerical fluxes at the cell interface by recon-
structing the gas distribution function f , thus we only need to calculate the moments of
the acceleration term (or the terms including it). For example, by multiplying (aξ ·∇ξ g)
by ξ ′x and ϕα, (α=1∼5) and then integrating it with respect to dΞ, according to Eqs. (2.5)
and (2.7), the acceleration term-related fluxes become∫

ξ ′x ϕα(aξ ·∇ξ g)dΞ=−
∫

g[aξ ·∇ξ(ξ
′
x ϕα)]dΞ. (2.22)

Now the only unknown in Eq. (2.21) is Ā. It is noted that both the expressions of f and
g contain Ā, therefore by using Ā = Āα ϕα and integrating the compatibility condition
(Eq. (2.8)) over a whole time step ∆t, i.e.,

∫ ∆t

0

∫
( f−g)’dΞ=0, (2.23)

we can get Ā from the above linear equations. As a common practice, for simulation of
turbulent flows [21, 22], the collision time τ in f is computed by

τ=
µL+µT

p
+c∆t

|pl−pr|
|pl+pr|

, (2.24)

where µL and µT denote the laminar viscosity and eddy viscosity at the cell interface,
respectively. The eddy viscosity µT is obtained by employing a turbulence model, such as
the Spalart-Allmaras one-equation model used here [23]. The presence of the additional
dissipation term is numerically necessary to capture a stable and robust shock structure,
where ∆t is the computational time step satisfying the CFL condition and c usually takes
a value ranging from 1 to 5.

It is seen from Eq. (2.21) that the solution f is time-dependent, and a uniform ∆t
throughout the flow domain is necessary, which takes the minimum value among all
the local time steps. This, however, may significantly decrease the computational effi-
ciency for steady-state flow computations. Considering that the BGK scheme focuses on
evaluation of fluxes at the cell interface, the local time step ∆t is still used to accelerate
convergence, and the time-average fluxes F are introduced

F=
1

∆t

∫∫
ξ ′x f (x,t,¸,ζ)’dΞdt. (2.25)

An efficient BGK-based implicit scheme by using the Jacobian-free Newton-Krylov
method [24] is employed for update of flow variables. The Chapman-Enskog expan-
sion shows that the developed BGK model only recovers the N-S equations with a fixed
Prandtl number of 1. In order to simulate flows with arbitrary Prandtl number, a simple
but effective way is adopted by approximately modifying the heat fluxes [25].
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2.3 Calculations of al(r) and āl(r)

As analyzed in [13], the viscous part of fluxes are contributed by a nonlinear average of
spatial derivatives of the initial state f0 and the equilibrium state g, i.e., the terms related
to al(r)= [al(r),bl(r),cl(r)]

T
and āl(r)= [āl(r),b̄l(r), c̄l(r)]

T
in Eq. (2.21). This section addresses

how to calculate these slopes in a more robust and accurate way since it is found that
the computed results for viscous flows could be greatly dependent on them. Before that,
one should be noted that the coordinates (x,y,z) used in this section represent the global
coordinate system, instead of the local system established previously. And it is easy to
convert the flow quantities between these two systems.

From Eqs. (2.12) and (2.20), the key point is to obtain the gradients of flow vari-
ables W and W̄. In most BGK schemes, a simple finite difference is employed, e.g., for
(∂W/∂x)l(r), (

∂W
∂x

)l

=
Wl

i+1/2−Wi

xi+1/2−xi
=

Wl
i+1/2−Wr

i−1/2

xi+1/2−xi−1/2
, (2.26a)(

∂W
∂x

)r

=
Wi+1−Wr

i+1/2

xi+1−xi+1/2
=

Wl
i+3/2−Wr

i+1/2

xi+3/2−xi+1/2
, (2.26b)

and for (∂W̄/∂x)l(r), (
∂W̄
∂x

)l

=
W̄i+1/2−Wi

xi+1/2−xi
, (2.27a)(

∂W̄
∂x

)r

=
Wi+1−W̄i+1/2

xi+1−xi+1/2
, (2.27b)

where Wi and Wi+1 represent the cell-averaged conservative variables at the left and right
cells. However, there are two disadvantages when using Eqs. (2.26) and (2.27). The first
one is that the above relations may give inadequate values for non-Cartesian mesh so that
they cannot be directly used. The detailed analysis have been provided in [13], where it is
also pointed out that the incorrect gradients can have disastrous effects. Although we can
remove this problem through the use of a coordinate transformation or a modified ap-
proach [13], it is still found that the way to calculate the gradients by a difference approx-
imation sometimes leads to unphysical results and even numerical instabilities, which
is thought as the second disadvantage. The reason is that the computed values may be
strongly sensitive to the mesh quality, or more specifically, the distance between cell cen-
ters and the distance between the cell center and the cell interface. This phenomenon can
be especially severe in practical rotating fluid applications such as in turbomachinery. In
order to improve the robustness and accuracy for calculating the derivatives of W and W̄
and the subsequent al(r) and āl(r), an improved approach is adopted.

Based on the MUSCL approach, a second-order upwind-biased scheme is first used
to obtain the left macroscopic state Wl and the right macroscopic state Wr at the cell in-
terface. To prevent the generation of oscillation and spurious solutions in discontinuous
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regions, the Van Albada’s limiter [26] is together employed. Therefore, for each W l(α)
and Wr(α), (α=1∼5), we have (for short, (α) is omitted)

W l =Wi+
1
2

∆+Wi∆−Wi(∆+Wi+∆−Wi)+ε

(∆+Wi)
2+(∆−Wi)

2+ε
,

Wr =Wi+1−
1
2

∆+Wi+1∆−Wi+1(∆+Wi+1+∆−Wi+1)+ε

(∆+Wi+1)
2+(∆−Wi+1)

2+ε
,

where ∆+Wi=Wi+1−Wi, ∆−Wi=Wi−Wi−1, ε is a small quantity. The above equations can
be similarly applied in the j− and k− directions. Then the derivatives of W are calculated
by applying the Gauss-Green theorem to the left and right cells, e.g., for (∂W/∂x)l(r),(

∂W
∂x

)l

=
1

Ωi,j,k

[(
WlSx

)
i+1/2,j,k

+
(

WlSx

)
i,j+1/2,k

+
(

WlSx

)
i,j,k+1/2

−(WrSx)i−1/2,j,k−(W
rSx)i,j−1/2,k−(W

rSx)i,j,k−1/2

]
, (2.28a)(

∂W
∂x

)r

=
1

Ωi+1,j,k

[(
WlSx

)
i+3/2,j,k

+
(

WlSx

)
i+1,j+1/2,k

+
(

WlSx

)
i+1,j,k+1/2

−(WrSx)i+1/2,j,k−(W
rSx)i+1,j−1/2,k−(W

rSx)i+1,j,k−1/2

]
, (2.28b)

where Ω is the volume, and Sx is the x−component of the face vector. Likewise, because
the ”average” conservative variables W̄ have been obtained at each cell interface, the
derivatives of W̄ can be calculated as follow(

∂W̄
∂x

)l

=
1

Ωi,j,k

[
(W̄Sx)i+1/2,j,k+(W̄Sx)i,j+1/2,k+(W̄Sx)i,j,k+1/2

−(W̄Sx)i−1/2,j,k−(W̄Sx)i,j−1/2,k−(W̄Sx)i,j,k−1/2

]
, (2.29a)(

∂W̄
∂x

)r

=
1

Ωi+1,j,k

[
(W̄Sx)i+3/2,j,k+(W̄Sx)i+1,j+1/2,k+(W̄Sx)i+1,j,k+1/2

−(W̄Sx)i+1/2,j,k−(W̄Sx)i+1,j−1/2,k−(W̄Sx)i+1,j,k−1/2

]
. (2.29b)

When Sx in the above two equations is replaced with Sy or Sz, the derivatives in the
y− and z− directions can also be evaluated. In order to make the illustrations more
clear, Fig. 1 shows the schematics for evaluation of gradients of W and W̄. Although
for clarity only the two-dimensional case is presented, one can easily extend it to the
three-dimensional case, which exactly leads to Eqs. (2.28) and (2.29). Numerically, it is
shown that in the case of Cartesian mesh, the current approach has the same form as
Eqs. (2.26) and (2.27). However, it can better deal with non-Cartesian mesh even of poor
quality as the sensitivity of the calculated results to mesh quality is reduced. And due
to this, the robustness of the gas-kinetic BGK scheme can be improved. Further, it is
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Figure 1: Schematics for evaluation of gradients of (a) W and (b) W̄ for the two-dimensional case as an example.

seen from Eq. (2.21) that for flows of moderate Reynolds numbers (τ� t), the spatial
derivatives of g play a dominant role in contributing to the viscous part of fluxes, thus
Eq. (2.29) should accurately reflect the viscous effects. We know that in the conventional
N-S solvers, a usual way for evaluation of viscous fluxes is as follows. First, the cell-
centered flow variables are averaged at cell interfaces, then the gradients for each cell
are obtained by applying the Gauss-Green theorem, finally they are simply averaged
at cell interfaces. This way actually implies an assumption that the gradients of any
flow variables are continuous at the cell interface. In the current approach, the first two
steps are also needed as indicated in Eqs. (2.18) and (2.29), however, the gradients of g in
normal and tangential directions are allowed to be discontinuous. Physically, it describes
the formation of a continuous equilibrium state g at the interface through a collision
process, which reflects the microcosmic mechanism of the real viscosity.

3 Results and discussions

For validation, several numerical examples are presented, including a rotating cavity
with radial outflow, a rotating cavity with axial throughflow, a low-speed centrifugal
compressor and a transonic axial-flow fan rotor. In all computations, a non-inertial frame
of reference tied to the rotating parts is used. The laminar Prandtl number is taken as
0.72 and the turbulent Prandtl number is taken as 0.9.

Case 1: Rotating cavity with radial outflow.
A cavity formed between two co-rotating disks with an outer shroud is a common

feature in rotating machinery, such as in compressor and turbine rotor assemblies. The
study of flows in rotating cavities can be of great importance to the predictions of disk
stress and component life. In this case, the incompressible laminar flow inside a rotating
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Figure 2: Schematic diagrams of a rotating cavity with radial outflow.

cavity with radial outflow is considered. An idealized model of such flow is shown in
Fig. 2, which has been experimentally and theoretically studied by Owen et al. [27]. This
cavity corresponds to rig (2.3) used for the outflow experiments, which has axial width
s = 50.7mm, inner radius a = 38.1mm and outer radius b = 381mm. There are a total
of 30 square holes with a side of length c= 25.4mm uniformly distributed in the whole
shroud, through which the air is extracted from the cavity. A central driving shaft with
diameter 0.66a is fitted through the tube. For the axial inlet case, the inlet velocity is
determined from the volume flow rate of the fluid entering the cavity Q=Cwνb, where Cw
is the volume flow-rate coefficient and ν is the kinematic viscosity. The whole assembly
including two disks, the tube, the shroud and the driving shaft is rotating at an angular
speed Ω, which is determined by Ω=Reφν/b2 (Reφ is the rotational Reynolds number).

As shown in Fig. 2(b), the computational domain can be reduce to a single flow pas-
sage owing to the flow periodicity in circumferential direction. At the inlet, the complete
absolute velocity vector and the temperature are specified while the pressure is extrapo-
lated from the interior. At the outlet, the pressure is specified while the other variables are
obtained from the interior. The periodic conditions are applied to circumferential bound-
aries. The no-slip isothermal boundary conditions are applied to the rotating walls, and
the whole flow field can be approximately thought to be isothermal. The computational
mesh is composed of two H-type blocks with sizes of 41×61×61 and 81×61×161, re-
spectively.

Fig. 3 first shows the in-plane streamlines at mid-circumferential plane for (a) Reφ =

5×104, Cw=253 and (b) Cw=487. The predicted streamline pattern is consistent with the
flow visualization, numerically supporting the theoretical source-sink flow model. The
flow can be divided into four types of regions. The viscous regions between the interior
core and the disk faces are referred to as Ekman layers, where the steady boundary layers



182 D. Zhou, Z. L. Lu and T. Q. Guo / Adv. Appl. Math. Mech., 11 (2019), pp. 168-196

(a) Cw =253 (b) Cw =487

Figure 3: The in-plane streamlines at mid-circumferential plane for Reφ = 5×104 and two different values of
Cw.

become ”non-entraining”. The interior core appears between the two disk face boundary
layer flows, where viscous forces are negligible. The source region defines the zone where
the fluid is distributed from the source to the Ekman layers. On the contrary, the sink
layer redistributes the flow from the Ekman layers to the exit. Comparing the results for
Cw =253 and Cw =487, similar flow structures are found. However, with the increase of
the volume flow rate, the source region becomes larger while the interior core becomes
smaller, which has also been experimentally observed. Fig. 4 gives the corresponding in-
plane velocity contours. It is found that in the interior core, the radial and axial velocities
are very small and thus the fluid almost purely rotates at a certain angular speed. For the
current case of radial outflow, this speed is less than that of the disk, which can be seen
below.

The computed radial variations of vφ/Ωr (vφ is the absolute tangential velocity) at
mid-axial plane for the above two conditions are presented in Fig. 5, where the predicted
values are less than 1 at all radial locations. Also presented in this figure are the results
from the experiment and from the nonlinear theory [27]. It is found that in the interior
core (0.98≥ r/b≥ 0.6 for Cw = 253 and 0.98≥ r/b≥ 0.75 for Cw = 487), the numerical,
theoretical and experimental results agree well with each other, and in the source region
(r/b< 0.75 for Cw = 487), the computed velocity distribution is still consistent with the
experimental data. The discrepancies between the computed and theoretical results at
near-shroud locations are possibly due to the effect of the shroud hole on the local flow
field. In fact, without consideration of the ”hole effect”, the flow can be thought to be
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(a) Cw =253 (b) Cw =487

Figure 4: The in-plane velocity contours at mid-circumferential plane for Reφ=5×104 and two different values
of Cw.

(a) Cw =253 (b) Cw =487

Figure 5: The radial variations of vφ/Ωr at mid-axial plane for Reφ =5×104 and two different values of Cw.

axisymmetric as assumed in the nonlinear theory.

Case 2: Rotating cavity with axial throughflow.
This case illustrates a rotating cavity with axial throughflow, which is often used to

model part of the stack formed by multiple disks in an axial flow compressor. Fig. 6
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Figure 6: Schematic diagrams of a rotating cavity with axial throughflow.

(a) Ro→∞ (b) Ro=160 (c) Ro=80 (d) Ro=40

Figure 7: Schematic diagrams of a rotating cavity with axial throughflow.

shows a simplified model with the inner radius of two disks a=19mm, the outer radius
b= 190mm and the axial gap s= 50.73mm, corresponding to the cavity with a gap ratio
of G = s/b = 0.267 conducted in rig (b) [28]. In numerical computations, the inlet and
outlet boundary conditions are imposed the same as the previous case. The isothermal
conditions are considered where all the wall surfaces are at the same temperature. The
whole annulus is modeled and the resulting mesh contains approximately 1.2 million
cells. Different from above, the turbulence effects need to be included.

The two principle parameters for this flow is the Rossby number Ro=U/Ωa and the
axial Reynolds number Rez = 2Ua/ν, where U is the bulk average velocity of the axial
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Figure 8: The axial variations of vr/U at r/b=0.8 for Rez =8×104 and Ro=∞, 160 and 40.

throughflow. Fig. 7 shows the in-plane streamlines for Rez = 8×104 and Ro = ∞, 160,
80 and 40. When there is no rotation (Ro = ∞), a strong symmetric toroidal vortex is
generated inside the stationary cavity. For lower rotational speed (Ro=160), no obvious
change is found in the flow behavior except the appearance of a weak vortex near the
upstream disk. With further increase in rotational speed (Ro = 80 and 40), the toroidal
vortex is gradually suppressed and the fluid tends to rotate ”purely” (the radial velocity
is very small) over a wider region. For the current selected conditions, the flow fields
are all in stable states showing excellent symmetries as seen in the figure. However, it
should be noted that when the rotational speed is increased above certain values, the
vortex breakdown could occur, leading to a number of characteristic flow modes which
are probably related with instabilities. This issue is currently beyond the scope of this
paper and leaves room for our follow-up study.

Fig. 8 shows the axial variations of the radial velocity vr at the radial position r/b=0.8
for Rez =8×104 and Ro=∞, 160 and 40. It is seen that the fluid moves inward near the
upstream disk while moves outward near the downstream disk, which is consistent with
the toroidal vortex shown in Fig. 7. With the increase of the rotational speed from zero
to a higher value, the radial velocity is significantly decreased. For Ro=∞ and 160, the
computed results are in good agreements with the experimental data. The reasons for
the underestimate near the downstream disk are probably because of the inconsistent
setup with that in the real experiment and the error introduced by the turbulence model.
For Ro = 40, both the numerical and experimental results show that the radial flow is
suppressed to an extremely low level.

Fig. 9 further shows the radial variations of the tangential velocity vφ at mid-axial
plane for Rez = 4×104 and Ro= 160, 80 and 40. The agreements between the computed
and experimental results are good, although the peak values at lower rotational speeds
are slightly over-predicted. It is found that at higher r/b, the value of vφ/Ωr tends to
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Figure 9: The radial variations of vφ/Ωr at mid-axial plane for Rez =4×104 and Ro=160, 80 and 40.

unity, indicating that the flow is in near solid body rotation at outer part of the cavity.
With the increase of the rotational speed, the peak value of vφ/Ωr decreases and the area
of near-solid body rotation becomes larger, again confirming the flow patterns referred
above.

The validity of the present method for incompressible rotating flows has been veri-
fied through the first two cases. Due to the regularity of the used mesh, the proposed
new way and the regular way for calculating the spatial derivatives of f0 and g lead to
almost the same results. In the following, two more complex and practical applications
are considered.

Case 3: Low-speed centrifugal compressor.
This case is about the NASA low-speed subsonic centrifugal compressor, which was

designed to investigate the essential flow physics of the flow field. A complete descrip-
tion of the experiment and the detailed measured data can be found in [29]. Fig. 10 shows
a schematic diagram of the compressor, which contains a backswept impeller followed by
a vaneless diffuser. The basic specifications of the compressor are shown in Table 1. The
computational domain is characterized by a long twisted flow passage of high curvature
and low aspect ratio, and the resulting mesh consists of approximately 0.8 million cells.
At the inlet boundary, the distributions of the total pressure, total temperature and flow
direction are specified, and the other variables are determined through the non-reflecting
boundary condition and the isentropic condition. At the outlet boundary, the imposed
static pressure has been adjusted to meet the target mass flow rate, and the other vari-
ables are extrapolated from the interior. As in the experiment, the hub wall is moving
with the rotor blade, while the diffuser hub and the whole shroud are stationary. All
the solid wall boundaries are assumed to be adiabatic. Periodic conditions are imposed
along the circumferential boundaries. A design flow rate condition with the target mass
flow rate ṁ=30kg/s is chosen to be studied.
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Figure 10: Schematic diagram of the centrifugal compressor.

Table 2 shows the comparison of the computed overall performance with the data
from experiment and from reference [30]. Also presented are the results from the con-
ventional N-S solver which uses the upwind Roe scheme for evaluation of inviscid fluxes.
The adiabatic efficiency is computed based on the energy-averaged total pressure ratio
and the mass-averaged total temperature ratio. It is found that the present method and
the N-S solver give very similar results, both of which are in better agreements with
the experimental data. Shown in Fig. 11 are comparisons of distributions of normalized
reduced pressure Pr/Pre f at 5%, 49%, 79% and 98% spanwise sections from hub, respec-

Table 1: Basic specifications of the low-speed subsonic centrifugal compressor.

Number of impeller blades 20

Tip diameter (m) Inlet 0.870
Exit 1.524

Blade height (m) Inlet 0.218
Exit 0.141

Backsweep angle (deg) 55
Clearance between blade tip and shroud (mm) 2.54
Rotational speed (rpm) 1862
Design tip speed (m/s) 153
Design mass flow rate (kg/s) 30

Table 2: Comparison of overall compressor performance at the design condition.

Experiment Reference [30] N-S solver Present
Energy-averaged total pressure ratio 1.141 1.1395 1.1404 1.1400

Mass-averaged total temperature ratio 1.042 1.0404 1.0416 1.0415
Adiabatic efficiency 0.922 0.9415 0.9190 0.9189
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(a) (b)

(c) (d)

Figure 11: Comparisons of distributions of normalized reduced static pressure at different spanwise sections.

tively. The reduced pressure Pr is defined as

Pr = p
[

E∗

E∗+Ω2r2/2

]γ/(γ−1)

,

where p is the static pressure, E∗ is the relative total energy, and the reference pressure Pre f
is taken as the inlet total pressure. As seen in Fig. 11, by using both the present method
and the N-S solver, overall good agreements are found over a wide range of blade sur-
faces. The discrepancies between predicted and experimental results can be similarly
found in [30]. There are only slight differences between the numerical results at near
blade tip and it seems that a better agreement with the experimental data is achieved.
The good agreements can also be seen in Fig. 12, where the BGK scheme gives consistent
isolines of reduced pressure on blade surfaces with those from experiment and reference.
An obvious pressure gradient from hub to tip is observed in the majority of the flow
channel, which is balanced with the wall curvature caused inertia and centrifugal forces
and the rotation caused centrifugal and Coriolis forces. At near impeller outlet, the pres-
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(a) Pressure surface

(b) Suction surface

Figure 12: Comparisons of isolines of normalized reduced static pressure on blade surfaces.

sure gradient gradually disappears and an almost uniform distribution is found. There
are isoline loops on the pressure surface (PS), which is caused by the tip vortex shift-
ing away from the shroud/PS corner. However, the predicted loop area seems slightly
smaller than the other two ones. As for the suction surface (SS), the pressure gradient
is higher than that on the pressure surface, and the predicted isolines are closer to the
experimental results as compared with those from reference.

Because a full matching mesh (point-to-point mesh) is employed on periodic bound-
aries and the real tip clearance is modeled, there inevitably appear some grid cells of
degrading qualities in such a narrow and long-twisted passage. For this case, when the
original way to calculate the derivatives of f and g is used in the BGK scheme, the conver-
gence difficulty could be encountered. However, by using the current approach, we suc-
cessfully simulate the viscous flows in this practical rotating machinery and it is shown
that the accuracy is comparable to that of the N-S solver.

Case 4: Transonic axial-flow fan rotor.
The last case presents the simulation of the transonic flow in a low-aspect-ratio axial-
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Figure 13: Schematic diagram of the transonic axial-flow fan rotor.

flow fan rotor, Rotor67, which was designed and experimentally analyzed at the NASA
Leiws Research Center. Detailed experimental data and the rotor geometry can be re-
ferred to [31]. A schematic diagram of Rotor67 is shown in Fig. 13, and the basic speci-
fications of the rotor are given in Table 3. As seen in Fig. 13, only a single flow passage
is modeled due to the use of the periodic boundary conditions. The inlet boundary con-
ditions are imposed in the same way as in the previous case. At the outlet boundary, the
static pressure is specified at hub location and a radial equilibrium equation is solved to
obtain the pressure distribution. The other variables are obtained through extrapolation
from the interior. All the computations are performed on a fine mesh composed of about
1.6 million cells.

Fig. 14 first shows comparisons of the computed overall performance with the ex-
perimental results, including the variations of total pressure ratio Pt and the adiabatic
efficiency η with nondimensional mass flow rate. Also presented are the numerical re-

Table 3: Basic specifications of the transonic axial-flow fan rotor, Rotor67.

Number of rotor blades 22

Tip diameter (m) Inlet 0.514
Exit 0.485

Hub/tip radius ratio Inlet 0.375
Exit 0.478

Clearance between blade tip and shroud (mm) 1.016
Rotational speed (rpm) 16043
Rotor tip speed (m/s) 429
Inlet tip relative Mach number 1.38
Design mass flow rate (kg/s) 33.15
Design pressure ratio 1.63
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Figure 14: Comparisons of overall performance at design speed.

sults from a recently-developed lattice Boltzmann flux solver (LBFS) [20]. The predicted
mass flow rates at choke by using the present method and the LBFS are 34.6469kg/s and
34.6534kg/s, respectively, while the experimental value is 34.96kg/s. The differences are
both less than 1%. It is seen from Fig. 14 that no apparent differences are found between
the numerical results. The predicted rotor performance in general agrees well with the
experimental data, although it is slightly under-predicted.

To further explore the capability of the present method for capturing flow details,
a near-peak-efficiency condition which is consistent with the experimental setup is se-
lected to be studied. Fig. 15 shows comparisons of the spanwise distributions of energy-
averaged pressure ratio Pt, mass-averaged temperature ratio Tt and area-averaged flow
angle. Excellent agreements are found between the numerical results from the present
method and the LBFS, despite of slight discrepancies at near endwall region where vis-
cous effects dominate. The reason is probably because in the LBFS, only inviscid fluxes
are reconstructed from the solution of the lattice Boltzmann equation while the viscous
fluxes are calculated simply by central averaging. However, in the current BGK scheme,
the invisicd and viscous fluxes are evaluated simultaneously as a whole. It is also seen
from the figure that the predicted temperature ratio shows a favorable agreement with
the experimental data but the pressure ratio is overall underestimated, which explains
the under-prediction of overall performance shown in Fig. 14. The over-prediction of the
flow angle can be similarly observed in [32].

Still for this near-peak-efficiency condition, Fig. 16 shows comparisons of the isolines
of relative Mach number at 30%, 70% and 90% span from hub, respectively. The com-
puted contours in general agree well with those from the experiment. At 30% span, the
flow is entirely subsonic over the passage except for a small supersonic area near the
leading edge. At 70% span, an obvious bow shock attached to the leading edge appears
and impinges on the location of about 55% chord of the suction side of the adjacent blade.
After the bow shock, there is also a weak passage shock. Basically, they do not greatly
interfere with each other. At 90% span (near tip), a typical form of the λ−structure is
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Figure 15: Comparisons of spanwise distributions of pressure ratio Pt, temperature ratio Tt and flow angle for
the near-peak-efficiency condition.

found as a result of the combined effects of the boundary layer, the bow shock and the
passage shock. The flow over the passage is almost entirely supersonic. With the increase
of the spanwise location and the resulted inflow velocity, the bow shock impinges on the
location closer to the trailing edge of the adjacent blade surface, and the intensity of the
passage shock becomes higher.

For the same reason demonstrated in the previous case, when the original way to
calculate the derivatives of f and g is used without extra fixes, unreasonable values of
the derivatives are first obtained at several cell interfaces. Then the influence of them
would gradually spread to the whole flow field, causing floating point errors.

4 Conclusions

In this paper, aiming at simulation of viscous flows in rotating machinery, a three-
dimensional gas-kinetic BGK scheme is presented. The key point for developing the
current method is to construct an appropriate BGK model for the N-S equations in a ro-
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(a) 30% span

(b) 70% span

(c) 90% span

Figure 16: Comparisons of isolines of relative Mach number at different spanwise locations for the near-peak-
efficiency condition.

tating frame of reference. In order to include the non-inertial effects into the BGK model,
a specifically-designed acceleration term is introduced. Under the finite-volume frame-
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work, the numerical fluxes at each cell interface are evaluated by reconstructing the solu-
tion of the modified Boltzmann equation, and subsequently the flow filed can be solved.
To improve the modeling capability of the BGK scheme in practical rotating fluid applica-
tions where some distorted mesh may exist, we also propose to employ an improved ap-
proach to calculate the derivatives of gas distribution function and its equilibrium state.
For validation, several tests cases are investigated. The computed results show that the
developed method can be well applied to typical rotating flows with favorable accuracy
and robustness. Through this work, the application scope of the BGK-type method is also
extended.

Appendix: Expressions of coefficients aα, bα, cα, Aα, (α=1∼5) by
using the chain rule

The expression of equilibrium state is repeated here

g=ρ

(
λ

π

) N+3
2

e−λ((ξx−u)2+(ξy−v)2+(ξz−w)2+ζ2).

Take the slope

a=
∂g

g∂x
as an example, by using the chain rule for the above Maxwellian distribution function g,
it can be expanded as follows

a=
∂g

g∂x
=

∂g
∂ρ

∂ρ

∂x
+

∂g
∂u

∂u
∂x

+
∂g
∂v

∂v
∂x

+
∂g
∂w

∂w
∂x

+
∂g
∂λ

∂λ

∂x
.

According to Section 2.2, a can also be written as a linear combination of the collision
invariants ϕα, (α=1∼5), i.e.,

a= aα ϕα = a1+a2ξx+a3ξy+a4ξz+
1
2

a5(ξ
2
x+ξ2

y+ξ2
z+ζ2).

Comparing the above two equations, we directly get

a1=
∂ρ

ρ∂x
−2λ

(
u

∂u
∂x

+v
∂v
∂x

+w
∂w
∂x

)
+

(
N+3

2λ
−u2−v2−w2

)
∂λ

∂x
, (A.1a)

a2=2
(

u
∂λ

∂x
+λ

∂u
∂x

)
, (A.1b)

a3=2
(

v
∂λ

∂x
+λ

∂v
∂x

)
, (A.1c)

a4=2
(

w
∂λ

∂x
+λ

∂w
∂x

)
, (A.1d)

a5=−2
∂λ

∂x
. (A.1e)
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As for the other coefficients bα, cα and Aα, they can be written in the same form as aα

except that the derivative symbol ∂/∂x in the above expressions is changed to ∂/∂y, ∂/∂z
and ∂/∂t, respectively.
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