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Abstract. The multi-physical transport phenomena through the different size geome-
tries are studied by developing a general local grid refinement approach for lattice
Boltzmann methods. Revisiting the method of local fine patches on the coarse grid,
through the Chapman-Enskog expansion, the multi-physicochemical source terms
such as ion electro-migration, heat source, electric body force, and free net electric
charge density can be rigorously incorporated to the rescaling relations of the dis-
tribution functions, which interchange between fine and coarse grids. We propose
two general local refinement approaches for lattice Boltzmann for momentum and
advection-diffusion equations with source terms. To evaluate our algorithm, (i) a
body-force driven Poiseuille flow in a channel; (ii) an electro-osmotic flow in which
the coupled Poisson-Nernst-Planck with Navier-Stokes equations for overlapped and
non-overlapped electric double layers; (iii) a symmetric and asymmetric 1D and 2D
heat conduction with heat generation in a flat plate; and (iv) an electric potential dis-
tribution near a charged surface, are modeled numerically. Good agreements with the
available analytical solutions demonstrated the robustness of the proposed algorithm
for diffusion or advection-diffusion equations, which may be coupled or decoupled.
The present model may broaden the applications of local grid refinement for modeling
complex transport phenomena, such as multi-physicochemical transport phenomena
in different size geometries.
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1 Introduction

At recent decade, investigating mechanisms of multi-physicochemical transport phe-
nomena has been of great interests with important applications in micro- and nanosys-
tems [1–7]. To study the transport mechanism, the uniform grid lattice Boltzmann method
as an efficient and inexpensive method has been widely used recently [8–12]. However,
in real applications, for different size (e.g., micro-nano conjunction) problems or prob-
lems with a high gradient of physical properties region, the uniform grids would not
retain the major superiority of the lattice Boltzmann method over other computational
methods. To deal with this challenge, several attempts have been drawn to improve the
adequate grid resolution of the lattice Boltzmann method [13–19]. For this purpose, the
local grid refinement method has been proposed based on the concept of the hierarchical
grid refinement with higher applicability, accuracy, and efficiency [20].

The first employing of second-order local grid refinement technique for the lattice
Boltzmann model was developed by Filippova and Hanel [21], which hereinafter is so
called as FH model. In their work, the whole domain is covered by a coarse grid. For
regions where large changes of macroscopic properties are expected, fine grids are su-
perposed to the coarse grid. In addition, for the adaptive mesh refinement methods, one
can adapt the size and number of superposed fine patches [22]. By considering the same
viscosity and, as a result, the same Reynolds number for two grids, the relaxation param-
eters could be redefined for fine grids. For a pressure driven flow over a circular cylinder,
the drag (CD), lift (CL) and pressure difference (∆P) coefficients have good agreements
with the available experiments [23]. Later, Filippova and Hanel [20] developed their
model in which the molecular velocities in the fine and coarse grids could be different. It
should be mentioned that the Reynolds number for both fine and coarse grids is retained
identical. Lin and Lai [24] proposed a simpler algorithm without considering the rescal-
ing of distribution functions when transformed from coarse to fine grid and vice versa.
However, this assumption may impose some inaccuracy since the non-equilibrium part
of the distribution function has been ignored. Dupuis and Chopard [25] showed that
how the approximation of the non-equilibrium distribution function without external
force could resolve the singularity problem of the FH model when the relaxation pa-
rameters were close to 1.0. For the applicability of the local grid refinement technique,
Rohde et al. [26] indicated that their methods were capable of accurately describing the
experimental data. To extend the applicability of modeling different flow regimes, La-
grava et al. [27] proposed a method to interchange data for fine-coarse grids under high
Reynolds number. Moreover, Eitel-Amor et al. [28] proposed a local hierarchical adaptive
grid refinement using the cell-centered lattice structure. They demonstrated that the pro-
posed method could be applied for modeling high Reynolds number flow regimes over
a sphere or a circular cylinder. Considering other transport phenomena, Liu et al. [29]
reported a two-dimensional multi-block lattice Boltzmann model for solute transport in
a shallow water based on the advection-diffusion equation without source term. Stiebler
et al. [30] extended the advection-diffusion LB scheme for the hierarchical grids based on
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the advection-diffusion LB algorithms which proposed by Ginzburg [31]. They proposed
that the coupled different resolution grids could be introduced to the advection-diffusion
equation by appropriate interpolations in space and time.

Since the lattice Boltzmann method has been employed extensively to model various
emerging micro and nano-scale phenomena [32, 33], it is crucial to develop the local grid
refinement techniques for the multi-physicochemical transport phenomena to save com-
putational costs. For instance, the intersection of the micro- and nanochannel [34,35] or at
the interface of nanoporous media and aqueous solution [36] has been exhibited interest-
ing phenomena such as ion concentration polarization. In order to model and understand
this phenomenon, employing finer mesh for the nanoscale part of the system is crucial
to meet two demands: (I) saving computational costs and (II) acquiring desirable accu-
racy. However, considering previous efforts demonstrated that, to our best knowledge,
no robust and general local grid refinement method has been proposed for the lattice
Boltzmann modeling of the multi-physics by considering the presence of heat source,
body force, electro-migration, or free net charge density. The aim of this contribution is
to develop a general lattice Boltzmann local grid refinement model for coupled or decou-
pled diffusion and advection-diffusion equations where the effects of the multi-physics
transports have been considered. To meet this aim, we develop generalized lattice Boltz-
mann models for momentum and advection-diffusion equations. In these equations, the
relevant source terms are rigorously added to the governing equations in fine and coarse
regions. By employing the Chapman-Enskog expansion and neglecting the higher orders
of the small value (ε), we could incorporate the source terms to the fine and coarse grids
transformation equations. This assumption of neglecting higher orders of the ε is avail-
able since in the present contribution we consider low Reynolds fluid flows. Moreover,
the equations to transport the data from fine to coarse and vice versa are modified for
when the source terms are involved in the governing equations. It is worth pointing out
that the method of present work to incorporate the source term to transformation rela-
tions of fine-coarse grids could be followed with other proposed local grid refinement
methods [24, 25, 27, 37–40]. The paper is organized as follows. In Section 2, we proposed
the developed local grid refinement algorithm for momentum and general advection-
diffusion equations with source term. In Section 3, a body force-driven Poiseuille flow,
a multi-physicochemical transport (an electro-osmotic flow), one-dimensional and two-
dimensional heat conduction with heat source, and the electric potential near to a charged
wall are investigated, respectively, to examine the robustness and accuracy of our model.
After validating the present work local grid refinement algorithm, in order to demon-
strate the necessity of using the new local grid refinement algorithm for equations with
source term, we study the applicability of the FH model in Section 4.

2 Mathematical and numerical models
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2.1 Momentum and lattice Boltzmann evolution equations

For a multi-component constant-property Newtonian fluid flow, the governing equations
for laminar flow are [41, 42]

∂ρ

∂t
+∇·(ρu)=0, (2.1a)

∂(ρu)
∂t

+u·∇(ρu)=−∇p+∇·(ν∇(ρu))+F, (2.1b)

where ρ (kg/m3) is the density of the electrolyte, u (m/s) the flow velocity vector, t (s) the
time, p (Pa) the fluid pressure, v (m2/s) the kinematic viscosity and F (N/m3) the body
force density which may include all the implemented body forces such as electrical field
force or pressure gradient.

The general discrete uniform-grid lattice Boltzmann density distribution equation for
solving the Navier-Stokes equations in the presence of external forces is indicated as fol-
lows [43]

fi (X+eiδt,t+δt)− fi (X,t)=− 1
τv

[
fi (X,t)− f eq

i (X,t)
]
+δtFi, (2.2)

where index i is assigned values from 0 to 8 in the standard D2Q9 lattice (Fig. 1) and fi
the density distribution function at place X and time t. The relaxation time τv is related
to the kinematic viscosity as ν=(1/3)(τv−0.5)δt. Fi is the general format of the external
force distribution function at the same time and place and defined as follows [44]

Fi =
(−∇p+ρe (E−∇ψ))·(ei−u)

ρc2 f eq
i , (2.3)

where the ∇p and ρe(E−∇ψ) represent the external pressure gradient and the electrical
body force, respectively, while E, and ∇ψ denote the applied external electric field and

Figure 1: The D2Q9 lattice discrete velocities.
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the electric field due to the distribution of the ions. The Maxwell-Boltzmann equilibrium
distribution function for Eqs. (2.2) and (2.3) is [45]

f eq
i =ωiρ

[
1+

3(ei ·u)
c2 +

9(ei ·u)2

2c4 − 3
2
(u·u)

c2

]
, (2.4)

where u is the macroscopic velocity vector and ρ is the density of the fluid. ωi represents
the weighting factors for D2Q9 lattice as follows:

ωi =4/9, i=0,
ωi =1/9, i=1,2,3,4,
ωi =1/36, i=5,6,7,8.

(2.5)

After evolution, the macroscopic values of the density and velocity are calculated as fol-
lows:

ρ=
8

∑
i=0

fi, (2.6a)

ρu=
8

∑
i=0

fiei. (2.6b)

2.1.1 Local grid refinement algorithm for momentum equation with source term

Using the local grid refinement method for the region with large gradients of the physical
properties not only reduces the computational time and cost but also causes more stable
and accurate results. The strategy of the local grid refinement approach is simple and
straightforward [21]. Firstly, whole computational domain is covered by coarse grids.
Second, for the regions where high resolution is desired, patches of fine grids will be
superposed on the coarse grid. Obviously, the fine grid patch has two types of nodes on
the fine-coarse boundary as, (1) the nodes which coincide on the coarse nodes; (2) the
nodes place between the coarse nodes which are so-called hanging nodes. Considering
the hanging nodes, the distribution functions on the coarse grids should be temporally
and spatially interpolated to find out the related coarse distribution functions. Thus, in
order to provide higher accuracy, the interpolation procedure is of great importance. In
this contribution, we have employed the second-order spatially and temporally Lagrange
interpolation. Fig. 2 illustrates the configuration of a coarse grid with a superposed fine
grid. From the physical point of view, the macroscopic parameters in a locally refined
lattice system should be identical in different grids. Therefore, for fluid flow, the viscosity,
velocity, density (as a result the Reynolds number) and body force should be identical in
different grids.

Superposing a fine patch grid on a coarse grid will divide the space step through a
refinement factor as m = δx,c

δx, f
. Considering the general format of the lattice Boltzmann
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Figure 2: The illustration of a fine-coarse grid configuration. The hanging nodes depicted by the diamonds
symbols lying on the fine-coarse boundary.

equation with source term (Eq. (2.2)), one can rewrite it as

f pc
i =

(
1− 1

τv

)
fi+

1
τv

f eq
i +εFi, (2.7)

where f pc
i denotes the post-collision distribution function, ε is a very small amount which

is attributed to the δt. It is noted that Fi could be grid dependent or independent value.
However, for a simple body-force driven flow, Fi is defined as [44]

Fi =
(F̄)·(ei−u)

ρc2 f eq
i , (2.8)

where F represents the body force which is exerted to the whole region of the fluid flow.
In this work, we assume that both the space and time are divided by the fine grid refine-
ment factor. Consequently, the lattice speed for fine and coarse grids would be identical
(cc= c f ). Considering what mentioned above, one can point out that the equilibrium dis-

tribution function over local refined lattice systems should be equal ( f eq,c
i = f eq, f

i ) since the
velocity, density and lattice speed are identical for different grids (Eq. (2.4)).

Taking a Taylor expansion from the left-hand side of Eq.(2.2) in space and time pro-
vides [20]

ε(Dt fi)+
1
2

ε2(D2
t fi
)
+O

(
ε3)=− 1

τv

(
fi− f eq

i

)
+εFi, (2.9)

where Dt =
(

∂
∂t +eij

∂
∂xj

)
denotes the total derivative operator. Here, we point out that

based on the assumption of the continuous physical space in the limit of small ε, the
source term at right-hand side of Eq. (2.2) could be written as εFi. Using the first-order
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Chapman-Enskog expansion for both fine and coarse distribution functions gives rise to

f c
i = f eq,c

i +εc f (1),ci +O
(
ε2

c
)

, (2.10a)

f f
i = f eq, f

i +ε f f (1), f
i +O

(
ε2

f

)
, (2.10b)

where εc and ε f represent the coarse and fine grids small amounts, respectively, which
could be noted as εc=δ(x,c) and ε f =δ(x, f ). Substituting Eq. (2.10) into Eq. (2.9) and equat-
ing the same order of ε, one has

Dt f (0)i =− 1
τv

f (1)i +Fi, (2.11)

where f (0)i = f eq
i and Eq. (2.11) could be written as

f (1)i =τv
(

Fi−Dt f eq
i

)
. (2.12)

As mentioned above, in a local refinement lattice Boltzmann model, the term Fi−Dt f eq
i

should be identical for both fine and coarse grids. We define ξ = Fi−Dt f eq
i as a constant

parameter over different grids. Introducing Eq. (2.12) to Eqs. (2.10a) and (2.10b), we have

ξ=
f c
i − f eq,c

i
εcτc

v
=

f f
i − f eq, f

i

ε f τ
f

v
, (2.13)

where τc
v and τ

f
v represent the relaxation time for coarse and fine grids, respectively. By

considering the non-equilibrium definition ( f neq
i = fi− f eq

i ) for both fine and coarse grids,
Eq. (2.13) could give

f neq,c
i =m

τc
v

τ
f

v
f neq, f
i , (2.14)

where m= δx,c
δx, f

= εc
ε f

. Rewriting Eq. (2.7) in the form of non-equilibrium for coarse grid

f pc,c
i = f eq,c

i +

(
τc

v−1
τc

v

)
f neq,c
i +εcFc

i (2.15)

and substituting Eq. (2.14) into it, by considering the equality of the equilibrium distri-
bution functions for different grids, we have

f pc,c
i = f eq, f

i +m
τc

v−1

τ
f

v
f neq, f
i +εcFc

i . (2.16)

The f neq, f
i in Eq. (2.16) could be substitute as

f neq, f
i =

(
τ

f
v

τ
f

v −1

)(
f pc, f
i − f eq, f

i −ε f F f
i

)
. (2.17)
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By introducing Eq. (2.17) into Eq. (2.16), finally, the relation for transforming data from
fine to coarse grid for momentum equations with source term is developed as

f pc,c
i = f eq, f

i +m

(
τc

v−1

τ
f

v −1

)(
f pc, f
i − f eq, f

i −ε f F f
i

)
+εcFc

i . (2.18)

Eq. (2.18) proposes the rescaling relation when distribution functions are transforming
from fine to coarse grid. It is worth noting that two added terms, ε f F f

i and εcFc
i , rep-

resent the source term of Eq. (2.9) in rescaling relations. However, still the transmitted
distribution functions should be rescaled when transform from coarse to fine grid. To
this purpose, in a similar approach to what was performed for Eq. (2.18), the distribution
functions transformed from coarse to fine grids could be rescaled as

f pc, f
i = f̃ eq,c

i +
1
m

(
τ

f
v −1

τc
v−1

)(
f̃ pc,c
i − f̃ eq,c

i −εcFc
i
)
+ε f F f

i , (2.19)

where εc = δt,c, ε f = δt, f and f̃i define the spatially and temporally interpolated values of
the distribution functions from coarse grids on the fine-coarse boundary. As mentioned
before, since the viscosity and as a result the Reynolds number should be same in a local
refined lattice system, by considering the definition for viscosity as ν= (2τ−1)δxc

6 , one can
find out the relaxation parameter for the fine grids as [21]

ω f =
2

1+m
(

2
ωc
−1
) , (2.20)

where ω denotes the relaxation parameter as ω=1/τ.
Here we should note that the proposed local grid-refinement method provides second-

order accuracy in space for when the Mach number of the flow would be on the order of
Knudsen number.

2.2 General advection-diffusion and lattice Boltzmann evolution equations
with source term

The conservation equation which governs the transport phenomena and includes the
advection-diffusion with a source term could be generally written as

∂φ(X,t)
∂t

+u·∇φ(X,t)=Dφ∇2φ(X,t)+ϕ(X,t), (2.21)

where φ(X,t), Dφ, and ϕ(X,t) represent the property distribution in time and space, the
diffusion coefficient of the property, and the source term which may affect the distribu-
tion of the property spatially and temporally, respectively. On the other hand, consider-
ing the lattice Boltzmann evolution equation for different advection-diffusion phenom-
ena including source terms, a general format for lattice Boltzmann evolution equation
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can be presented as

Φi (X+eiδt,Φ,t+δt,Φ)−Φi (X,t)=− 1
τΦ

[
Φi (X,t)−Φeq

i (X,t)
]
+δt,ΦFϕ,i, (2.22)

where Φi, Φeq
i , τΦ, and δ(t,Φ) represent the distribution function, equilibrium distribu-

tion function, relaxation time which is defined as τΦ=(3Dφ)/(2cφδx)+0.5, and time step
for a specified transport phenomenon (i.e., heat, ion or electric potential), respectively.
In Eq. (2.22), the lattice speed of transferring date is defined as cφ = δx/δt. It should be
pointed out that F(ϕ,i) represents the specific lattice Boltzmann source term and gener-
ally defined as [46]

Fϕ,i =ωi

(
1− 0.5

τΦ

)
ϕ(X,t), (2.23)

where ϕ(X,t) is the source term which is denoted in Eq. (2.21). Obviously, the term ϕ(X,t)
should be an independent term of the grid size in our local refined lattice system. It is
worth pointing out that there is another format of forcing term which is more accurate
and complex [47] than the conventional forcing term (Eq. (2.24)). The weighting factor,
ωi, would be similar as those defined in Eq. (2.5). The general Maxwell-Boltzmann equi-
librium distribution function for Eq. (2.22) is

Φeq
i =−ϑ̄iφ(X,t)

3u·u
2C2 , i=0, (2.24a)

Φeq
i = ϑ̄iφ(X,t)

[
3
2
+

3ei ·u
2c2 +

9(ei ·u)2

2c2 − 3u·u
2c2

]
, i=1,2,3,4, (2.24b)

Φeq
i = ϑ̄iφ(X,t)

[
3+

6ei ·u
c2 +

9(ei ·u)2

2c2 − 3u·u
2c2

]
, i=5,6,7,8, (2.24c)

where ϑ̄i is the equilibrium weighting factors and defined as the same as ωi,

ϑ̄i =



4
9

, i=0,

1
9

, i=1,2,3,4,

1
36

, i=5,6,7,8.

(2.25)

Finally, the macroscopic amounts of the properties are obtained as

φ(X,t)=

(
8

∑
i=0

Φi+
δt,Φ

2
Fϕ,i

)
. (2.26)
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2.2.1 Local grid refinement method for advection-diffusion equations with source
term

The same approach with Section 2.1 is employed to obtain the rescaling relations for
distribution functions in a general advection-diffusion equation with source term. By
introducing the Chapman-Enskog expansion

Φc
i =Φeq,c

i +εcΦ(1),c
i +O

(
ε2

c
)

, (2.27a)

Φ f
i =Φeq, f

i +ε f Φ(1), f
i +O

(
ε2

f

)
, (2.27b)

to Eq. (2.22) and considering the same order of ε, one has

Φ(1)
i =τΦ

(
Fϕ,i−DtΦ

eq
i

)
. (2.28)

Substituting Eq. (2.24) into Eq. (2.28), we have

Φ(1)
i =τΦ

((
1− 0.5

τΦ

)
ωi ϕ(X,t)−DtΦ

eq
i

)
. (2.29)

Eq. (2.29) shows that the source term could be divided into two terms as the grid depen-
dent term (1−0.5/τΦ) and the grid independent term which is represented by ωi ϕ(X,t).
In order to make a grid independent parameter, Eq. (2.29) could be written as

Φ(1)
i =τΦ

(
ωi ϕ(X,t)−DtΦ

eq
i

)
−0.5ωi ϕ(X,t). (2.30)

So, we define ξ =ωi ϕ(X,t)−DtΦ
eq
i as a grid independent parameter. If Eq. (2.30) intro-

duces to Eqs. (2.27a) and (2.27b), we have

ξ=
Φc

i−Φeq,c
i + εcωi ϕ(X,t)

2
εcτc

Φ
=

Φ f
i −Φeq, f

i +
ε f ωi ϕ(X,t)

2

ε f τ
f

Φ

. (2.31)

By taking into account the non-equilibrium distribution function definition, Eq. (2.31)
gives rise to

Φneq,c
i =

εcτc
Φ

ε f τ
f

Φ

Φneq, f
i +εc

(
τc

Φ

τ
f

Φ

−1

)(
ωi ϕ(X,t)

2

)
. (2.32)

Rewriting Eq. (2.22) in a non-equilibrium format (similar to Eq. (2.15)) and substituting
Eq. (2.32) in it, one has

Φpc,c
i =Φeq,c

i +m
τc

Φ−1

τ
f

Φ

Φneq, f
i +

εc

2

(
τc

Φ−1

τ
f

Φ

+1

)
ωi ϕ(X,t). (2.33)
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Moreover, by rewriting Eq. (2.22) in the non-equilibrium format for fine grid, one could
find out the fine non-equilibrium term as

Φneq, f
i =

(
τ

f
Φ

τ
f

Φ−1

)(
Φpc, f

i −Φeq, f
i −ε f

(
1− 0.5

τ
f

Φ

)
ωi ϕ(X,t)

)
. (2.34)

Finally, the rescaling relation for distribution functions transforming from fine to coarse
grids could be obtained when Eq. (2.34) substitutes into Eq. (2.33) as

Φpc,c
i =Φeq, f

i +m
τc

Φ−1

τ
f

Φ−1

(
Φpc, f

i −Φeq, f
i −ε f

(
1− 0.5

τ
f

Φ

)
ωi ϕ(X,t)

)

+
εc

2

(
τc

Φ−1

τ
f

Φ

+1

)
ωi ϕ(X,t). (2.35)

With a similar approach for Eq. (2.35), the rescaling relation for distribution function
transforming from coarse to fine grid is obtained as

Φpc, f
i =Φ̃eq,c

i +
1
m

τ
f

Φ−1
τc

Φ−1

(
Φ̃c

i−Φ̃eq,c
i −εc

(
1− 0.5

τc
Φ

)
ωi ϕ(X,t)

)
+

ε f

2

(
τ

f
Φ−1
τc

Φ
+1

)
ωi ϕ(X,t), (2.36)

where Φ̃i denotes the spatially and temporally interpolated coarse grid distribution func-
tions on the hanging nodes. Since the diffusion coefficient in a local refined lattice system
should be identical for different grids, by considering the general definition of the relax-
ation time as τΦ=

3Dφ

2cφδx
+0.5, it is found that the relation between relaxation parameter of

fine and coarse grid would be the same as what defined by Eq. (2.20). So, we have

ω f ,Φ =
2

1+m
(

2
ωc,Φ
−1
) . (2.37)

3 Benchmarks

3.1 Body-force driven Poiseuille flow

In order to validate our local grid refinement lattice Boltzmann model for momentum
equations with the presence of a source term (Section 2.1), we have solved a simple body-
force driven Poiseuille flow in a channel. To this aim, a 1D microchannel which the fluid
flow is driven by a uniform body force has been considered. By solving Eq. (2.1) with
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Figure 3: The numerical approach for solving the momentum equations in the present work local grid refinement
lattice Boltzmann model.

proper boundary conditions (non-slip velocity boundary conditions at the wall), one has
the analytical solution for velocity as

U(y)=
H2

Ū

(
F̄x

2µ

)(
y
H
−
( y

H

)2
)

, (3.1)

where, µ is the dynamic viscosity (Pa×s), H the width of the channel, and F̄x the com-
ponent of the body force in the channel length direction. The problem is subjected to a
steady-state at Re=80 and the domain is covered by coarse grids meshed 201×51.

The numerical approach for solving the momentum equations in this section is de-
picted in Fig. 3.

It should be noted that: (1) transformation of distribution functions from coarse to
fine grids (by Eq. (2.19)) must be exclusively performed on the fine-coarse boundary; (2)
the fine grid data would be transformed to coarse grid (by Eq. (2.18)) solely on the coarse
grids which excluding nodes on the fine-coarse boundaries.

3.1.1 Fine grid patch location effects

It would be of great importance to prove that the proposed local grid refinement algo-
rithm is generally applicable for different location of the fine patch in coarse grid. One
common application of this capability could be found in modeling a moving particle in
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Figure 4: The configuration of the fine grid patches superposed on the coarse grid. The centers of the fine grid
patch 1 and 2 are placed in same location with different sizes. Fine patch 3 is positioned with a contact line
with the microchannel wall to investigate the ability of the proposed local grid refinement in contact with the
boundaries of the main domain.

Figure 5: The dimensionless body-force driven Poiseuille velocity along the height of the channel for four fine
grid patches compared with the analytical solution.

a fluid. To this purpose, five different fine grid patches with different sizes and locations
have been considered in which one patch is located adjacent to the channel wall to ex-
amine if the algorithm is applicable near to the coarse grid boundaries (Fig. 4). It should
be noted that the refinement factor of the fine grid patches is selected as m = 4. Fig. 5
illustrates that the presented model predicts dimensionless body-force driven Poiseuille
velocities for five patches in a good agreement with the analytical solution.

3.2 Steady-state diffusion transport phenomena

3.2.1 1D and 2D heat conduction with heat generation

In this section, our model is examined for the steady-state diffusion transport phenomena
with source term. To this purpose, we employ the general advection-diffusion equation
to introduce the local grid refinement algorithm for the heat conduction with heat gen-
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Figure 6: The schematic of a 1D heat conduction with heat generation (Q̇) under symmetric (T(0)=T(H))
and asymmetric (T(0) 6=T(H)) walls temperature.

eration. Generally, the governing equation of the steady-state heat conduction with heat
source is [32]

α∇2T=−
(

1
ρcp

)
Q̇, (3.2)

where α, cp and Q̇ denote the thermal diffusivity coefficient, specific heat capacity and
heat generation per unit volume, respectively. Thus, if we set Dφ = α, φ(X,t) = T(X,t),

ϕ(X,t)=
(

1
ρcp

)
Q̇ and u(X,t)=0 the set of Eqs. (2.21)-(2.26) and Eq. (2.35) and (2.36) will

be introduced as the local grid refinement lattice Boltzmann model for heat conduction
with source term.

By subjecting a long and narrow plate with heat generation to a symmetric (T(0) =
T(H) = Tw) and asymmetric (T(0) = Tw and T(H) = 10Tw and 50Tw) uniform wall tem-
perature (Fig. 6), simple analytical solutions for steady-state dimensionless temperature
distributions could be obtained as [48]:

symmetric : T∗ (y)=
T(y)−Tw

Q̇H2

2K

=

(
y
H
−
( y

H

)2
)

, (3.3a)

asymmetric : T∗ (y)=
T(y)−T(0)

Q̇H2

2K

=

(
y
H
−
( y

H

)2
)
+

T(H)−T(0)
Q̇H2

2K

( y
H

)
, (3.3b)

where K in (W/mK) denotes the thermal conductivity of the plate which is uniform in
whole problem domain. Fig. 7 shows the perfect agreement of the present work modeling
results with analytical solutions (Eq. (3.3a) for 1D symmetric and asymmetric (Eq. (3.3b))
temperature distribution in a narrow plate with heat generation.

In order to examine present work local grid refinement algorithm for 2D heat con-
duction with a heat source, we consider a 2D flat plate with uniform wall temperatures,
thermal conductivity, and heat generation. Fig. 8 shows the schematic of the problem
under consideration.

The two fine grid patches were located similarly to what performed for the 1D sce-
nario. For a steady-state 2D heat conduction with heat generation (Eq. (3.2), there would
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Figure 7: The present work local grid refinement predictions of dimensionless 1D symmetric and asymmetric
temperature distribution along the height of a narrow plate with heat generation. The upper wall temperatures
are equal to T(H)=Tw, 10Tw, and 50Tw.

Figure 8: The schematic of a 2D plate subjected to a heat source (Q̇) with constant wall temperatures.

be an analytical solution as [48]:

T∗ (x,y)

=

(
1−
(

x−0.5L
0.5L

)2
)
−4

∞

∑
n=0

(−1)n

(0.5λnL)3

(
cosh(λn (y−0.5H))

cosh(0.5λnH)

)
cos(λn (x−0.5L)), (3.4)

where λn =
(2n+1)π

L and n=0,1,2,··· .
Fig. 9 shows that the present work local refinement algorithm also could predict well

agreement dimensionless temperature (T∗) with analytical solution.

3.2.2 Electric potential distribution (Poisson-Boltzmann equation)

Although in the last section, we examined the proposed local grid refinement algorithm
for a diffusion equation with a uniform source term, however, the applicability of the
proposed method should be investigated when the source term would be non-uniformly
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Figure 9: The present work local grid refinement predictions of T∗ for a 2D heat conduction with heat generation.

distributed and also depend on the diffused property. Thus, in addition to the energy
equation, in this section, the present work model will be examined via a Poisson equation
with variable source term. To meet the desired kind of diffusion problem, the distribution
of electric potential near a charged surface which is in contact with a binary electrolyte
solution is investigated. The governing equation for this problem is [49]

∇2ψ=− ρe

εrε0
=−

(
1

εrε0

)( 2

∑
i=1

ezin0exp
(
− eZi

kBT
ψ

))
, (3.5)

where ρe is the net electric charge density which could be obtained by employing the
ion Boltzmann distribution equation. The right-hand side of Eq. (3.5) represents a source
term which is due to the presence of the free net electric charge density. In Eq. (3.5), εr, ε0,
kB, and zi, represent the relative electrical permittivity of solution to vacuum, the vacuum
electrical permittivity (in C/Vm), the Boltzmann constant number, and the valance num-
ber of the ith ion, respectively. Fig. 10 demonstrates the capability of our model to provide
good agreements with analytical solutions for three different amounts of n0=6.02×1019,
1.5×1020, and 5.27×1020(ion/m3). It is worth pointing out that the analytical solution for
Eq. (3.5) would be presented in next section (Eq. (3.13a) in which ζ=ψ(X,0)).

3.3 Multi-physicochemical transport phenomena (coupled
Poisson-Nernst-Planck with Navier-Stokes equations)

In many applications, we need to solve the set of coupled equations to model several
coupled transport phenomena. For instance, the electro-osmotic flow which is generated
due to the motion of the ions near to a charged wall by an applied external electric field is
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Figure 10: The dimensionless electric potential for the present work local grid refinement lattice Boltzmann
model and analytical solution.

a result of three coupled transport phenomena such as (1) the ion transport, (2) the fluid
flow, and (3) the internal electric potential [50]. Regarding the governing equation of the
ion transport, the mass conservation equation for ith ion species in an electrolyte could
be written in general form as [8, 51]

∂Ci

∂t
+∇· Ji =0, (3.6)

where Ci demonstrates the ith ionic concentration, Ji the species flux. The flux of ith ion,
Ji consisting of electro-migration, diffusion, and advection terms in which by neglecting
the dispersion, one has [8]

Ji =−
(

eZiDi

KT

)
Ci∇ψ−Di (∇Ci)+Ciu, (3.7)

where the first term on the right-hand side denotes the electrochemical migration, the
second term the ions diffusion and the last term the advective transport. In the ions flux
equation, e, Zi, Di, K and T denote the absolute charge of electron, valance number for ith
ion, diffusion coefficient for ith ion, Boltzmann constant, and the absolute temperature,
respectively. Introducing Eq. (3.7) into Eq. (3.6), one has

∂Ci

∂t
+u·∇Ci =Di∇2Ci+

eZiDi

KT
∇·(Ci∇ψ). (3.8)

The local internal electric potential field, ψ, which is caused by the ion distribution, is
governed by the Poisson’s equation as mentioned by Eq. (3.5).
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Physically, by applying the external electric field, for non-zero net electric charge den-
sity, the fluid flow is generated due to the non-zero net moving of the co and counter-ions.
The governing equations for fluid flow would be similar to what mentioned in Section
2.1. However, the body force is defined based on the presence of the electrical field as

Fi =
ρe (E−∇ψ)·(ei−u)

ρc2 f eq
i . (3.9)

The aims of this section are (1) introducing the coupled local grid refinement algorithms
for the Nernst-Planck (ion transport) and the Poisson (electric potential) equations based
on the general advection-diffusion local grid refinement algorithm (Section 2.2); and (2)
solving the coupled presented lattice Boltzmann models for Poisson, Nernst-Planck, and
Navier-Stokes equations numerically in an iteration procedure. It should be noted that
the local grid refinement method for the fluid flow is similar to that presented in Section
2.1.

3.3.1 Local grid refinement lattice Boltzmann models for ion transport and electric
potential

Based on the general definition for the advection-diffusion equations with source term
(Section 2.2), one can simply propose the local grid refinement algorithm for:

1. ion transport as: if we set Dφ=Di, φ(X,t)=Ci(X,t), where Ci denotes the local con-
centration of the ions, and ϕ(X,t)= eZi Di

KBT ∇·(Ci(X,t)∇ψ(X,t)), the set of Eq. (2.21)-
(2.26) and Eqs. (2.35) and (2.36) will be introduced as the local grid refinement lattice
Boltzmann model for ion transport.

2. electric potential as: if we set Dφ =1, (∂φ(X,t))/∂t=0.0, φ(X,t)=ψ(X,t), ϕ(X,t)=
ρe(X,t)

εrε0
, and u(X,t)= 0, the set of Eqs. (2.21)-(2.26) and Eqs. (2.35) and (2.36) will be

introduced as the local grid refinement lattice Boltzmann model for electric poten-
tial.

3.3.2 Problem definition

A straight microchannel with height H = 6.0(µm) is considered with uniformly charged
walls. The zeta potential on the wall is ζ=−25(mV) and there would not be any applied
pressure gradient. It is assumed that since the electrolyte would be chemically and ther-
modynamically at equilibrium state, as a result, the well-known ion Boltzmann distribu-
tion equation is available and the solution is kept iso-thermal and equal to T=293.15(K).
The electrochemical properties of the solution is selected that the diffusion coefficients
of the ions and kinetic viscosity would be constant everywhere in the solution which is
DK+ =DCl−=1.0×10−8(m2/s) and ν=8.89×10−7(m2/s), respectively. The vacuum elec-
trical permittivity and the ratio of the electrolyte solution permittivity to vacuum permit-
tivity would be ε0=8.854×10−12(C/Vm) and εr=78.54, respectively. Electrostatically, the
positive ions will attract to the walls and the negative ions repel. As a result, an electric
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Figure 11: The illustration of fine patches were superposed near to the walls of the microchannel. The walls of
the microchannel were negatively charged where the electro-osmotic flow would be generated when an external
electric field is applied.

double layer (EDL) is formed near to the charged channel walls. The thickness of the
double layer is characterized by the famous Debye length. So, the characteristic electric
double layer thickness for the simple binary electrolyte is calculated as

λ=κ−1=

√
ε0εrKBT
2Z2e2n0

,

where the physical parameters are; electron charge e = 1.602×10−19(C), the Boltzmann
constant KB = 1.381×10−23(j/K), and the ionic number density n0, respectively. It is
well-realized that the electric double layer has the key role in the electrokinetic trans-
port phenomena [52–54]. Therefore, we superposed two fine grid patches adjacent to
the microchannel walls and consider two different dimensionless electrical double layer
thicknesses by n0 = 6.022×1019 and 1.271×1021(ion/m3) for κH = 6.29 and κH = 30.0,
respectively, to verify our model for overlapped and non-overlapped EDLs. Moreover,
it is worth noting that the fine grid patches are connected to the walls, inlet, and outlet
of the channel to examine our local grid refinement algorithm when superposed on the
boundaries of the coarse grid. Fig. 11 illustrates the setup of the electro-osmotic flow and
configuration of the coarse and fine grids.

The governing equations in this problem are subjected to the boundary conditions as
follows.

Boundary conditions for Navier-Stokes equations are

y=0→u=v=0, y=H→u=v=0, (3.10a)

x=0→ ∂u
∂x

=
∂v
∂x

=0, p=Patm, (3.10b)

x=L→ ∂u
∂x

=
∂v
∂x

=0, p=Patm. (3.10c)
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Boundary conditions for the Nernst-Planck equation are

y=0 and y=H→Ci =n0exp
(
−Zieψ

KBT

)
, (3.11a)

x=0→Ci =n0, (3.11b)

x=L→ ∂Ci

∂x
=0. (3.11c)

Boundary conditions for Poisson equation are

y=0 and y=H→ψ= ζwall , (3.12a)
x=0→ψ=0, (3.12b)

x=L→ ∂ψ

∂x
=0. (3.12c)

Employing the boundary conditions, the aforementioned multi-physicochemical (ion,
electric potential, and fluid flow) local grid refinement algorithms could be solved in
coupled iteration procedures (Fig. 12).

For each equation, a similar numerical approach with what was performed for the
body-force driven Poiseuille flow has been employed (Fig. 3). However, regarding the
distribution functions transformation relations (fine to coarse and vice versa), one has to
employ the related relations which we proposed in previous sections. For a solution in
a chemically and thermodynamically equilibrium state, the analytical solutions for the
electric potential, electro-osmotic velocity, and ion distribution are as [52]:

ψ(y)
ζ

=
cosh

(
κy− κH

2

)
cosh

(
κH
2

) , (3.13a)[
1− u(y)

Ure f

]
=

cosh
(
κy− κH

2

)
cosh

(
κH
2

) , (3.13b)

Ci (y)=n0exp
(
− Zie

KBT
ψ(y)

)
, (3.13c)

where Ure f represents the Helmholtz-Smoluchowski velocity which is defined as Ure f =
−ζεrε0Ep

µ in which the Ep denotes the applied external electric field strength (V/m). Fig. 13
shows the macroscopic properties of electro-osmotic flow with κH = 6.29, and 30.0 pre-
dicted by the coupled local grid refinement lattice Boltzmann models. It is demonstrated
that our local grid refinement algorithm could predict good agreements with the analyt-
ical solutions for both overlapped (κH=6.29) and non-overlapped (κH=30.0) electrical
double layers.
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Figure 12: The flowchart diagram of numerical approach for solving the coupled electro-osmotic governing
equations. The pack of local grid refinement LBM means the numerical approach which we illustrated at Fig. 3.

4 The applicability of the FH model

In last sections, we have demonstrated that the proposed local grid refinement model
predicts well agreement results with available analytical solutions for several different
coupled and uncoupled transport phenomena with dependent or independent source
terms of diffused property. However, in order to show the necessity of using the pro-
posed model for equations with source term, in this section, we conduct a study on the
applicability of the FH model for multi-physics equations with source terms. To this pur-
pose, the Nernst-Planck equation coupled with the Poissons equation are solved based
on the FH model for the microchannel defined at Section 3.2.2. Since the source term
does not incorporated in the FH model, as a result, the fine-coarse grids transformation
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Figure 13: The dimensionless macroscopic properties (K+, Cl−, ψ, and U) for two EDL thickness as κH=6.28
and 30.0. Solid lines and circle symbols represent the analytical solution and present work local grid refinement
method predictions, respectively.

relations would not be influenced by the source terms. Fig. 14 demonstrates that the
FH model can not take into account the effects of the source terms in the transforma-
tion relations correctly. Consequently, one can deduce that the FH local grid refinement
method could not generally applicable to model the lattice Boltzmann equations with
source term.

5 Conclusions

In this contribution, we developed a general lattice Boltzmann local grid refinement al-
gorithm for modeling the coupled multi-physics transport phenomena. By employing
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Figure 14: The dimensionless electric potential predictions by solving the Poisson-Nersnt-Planck equations for
the FH and present work local grid refinement models. The velocity for the NP equation is prescribed as input
parameter and equal to U=0.0.

the Chapman-Enskog expansion, we incorporated the source term to the transformation
relations of the distribution functions which interchange between fine and coarse grids.
Using the proposed local grid refinement lattice Boltzmann model for momentum equa-
tions, a body-force driven Poiseuille flow was studied with four different patches (size
and location). For all fine grid patches, our model could provide good predictions for
velocity along the width of the channel. To examine the capability of our model for diffu-
sion transport phenomena with uniform or variable source terms, the diffusion equation
with source term was investigated for: (1) a 1D (symmetric and asymmetric) and 2D heat
conduction with constant heat generation in a flat plate; (2) the electric potential distri-
bution near to a charged wall which the source term is spatially variable and depends on
the diffused property. Modeling results indicated that present work model could provide
good agreement compared with the analytical solutions. Moreover, as a main application
of the proposed local grid refinement algorithms for such coupled transport phenomena
with source terms, the electro-osmotic flow (Poisson-Nernst-Planck with Navier-Stokes)
in a microchannel was studied with two fine grid patches adjacent to the walls. The
present work model can provide good agreements with the analytical solution for the
flow field, ion concentration, and electric potential. To demonstrate the necessity of em-
ploying the new local grid refinement method for equations with source term, a study on
the applicability of the FH model for Poisson-Nernst-Planck equations showed that the
FH model could not provide correct results for electric potential. As a main conclusion,
the transformation relations for fine and coarse grids in a local grid refinement method
depend on the source terms in the discretized Boltzmann equation. The present local
grid refinement lattice Boltzmann model provides an efficient way to model the coupled
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multi-physicochemical transport phenomena in different size geometries.
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