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Abstract. In this paper, the discontinuous Galerkin method is applied to solve the
multi-pantograph delay differential equations. We analyze the optimal global conver-
gence and local superconvergence for smooth solutions under uniform meshes. Due
to the initial singularity of the forcing term f , solutions of multi-pantograph delay dif-
ferential equations are singular. We obtain the relevant global convergence and local
superconvergence for weakly singular solutions under graded meshes. The numerical
examples are provided to illustrate our theoretical results.
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1 Introduction

This paper deals with the properties of the following linear multi-pantograph delay dif-
ferential equation (MPDDE),

u′(t)= a(t)u(t)+
l

∑
i=1

bi(t)u(qit)+ f (t), t∈ J :=[0,T], (1.1a)

u(0)=u0, (1.1b)

where a(t),bi(t) are continuous functions, qi∈ (0,1), (i=1,2,··· ,l) are delay coefficients.
As one of the most important mathematical models, MPDDE is widely used in many

fields such as engineering, biology systems, physics and medicine. The study of the
MPDDE has been a rapid development by many authors numerically and analytically
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these years. Ishiwata [1] analyzed the attainable order of collocation method for neu-
tral functional-differential equations with proportional delays. Li and Liu [2] used the
Runge-Kutta method to solve the multi-pantograph delay differential equation. Taylor
method was also used to solve multi-pantograph delay differential equations, such as the
paper by Sezer et al. [3]. Brunner [4] applied the collocation method to the pantograph-
type Volterra functional equation with multiple delays and Yu [5] used the variational
iteration method to solve the multi-pantograph delay differential equation, respectively.
Feng [6] employed the homotopy perturbation method to solve multi-pantograph de-
lay differential equations with variable coefficients. Lately, Geng and Qian [7] solved
the singularly perturbed multi-pantograph delay differential equations based on the re-
producing kernel space method. Komashynska et al. [8] used the residual power series
method to solve a system of multi-pantograph delay differential equations. Davaeifar
and Rashidinia [9] utilized collocation methods for a system of multi-pantograph type
delay differential equations with variable coefficients and obtained the approximate so-
lutions based on the Boubaker polynomials. Zheng et al. [10] developed a Legendre-
collocation spectral method for the second order Volterra integro-differential equation
with delay. Sedaghat et al. [11] provided a spectral method based on the operational ma-
trices of the Legendre polynomials to solve neutral multi-pantograph delay differential
equations.

The discontinuous Galerkin (DG) method was first proposed in [12] as a nonstandard
finite element method for numerical solutions of neuron transport problems. Then DG
methods are extensively used in solving partial differential equations and integral dif-
ferential equations. DG methods are also successfully applied to delay differential equa-
tions and highlighted advantages compared with difference methods. Brunner et al. [13]
used the DG method to solve delay differential equation with one proportional delay.
Li et al. [21] applied DG method for delay differential equations with constant delay.
Huang et al. [14] improved the global convergence by some accelerate techniques based
on the local superconvergence results of DG solutions, and presented the hp-version of
the DG method with nonlinear vanishing delays [15]. They also developed the contin-
uous Galerkin (CG) methods for delay differential equations of pantograph type with
uniform meshes [16] and quasi-geometric meshes [17, 18].

In this paper, we intend to effectively employ the DG method to approximate smooth
solutions of the multi-pantograph delay differential equations with uniform meshes. Due
to the initial singularity of the forcing term f , solutions of multi-pantograph delay dif-
ferential equations are singular. We also intend to get the relevant global convergence
and local superconvergence of DG solutions for weakly singular multi-pantograph delay
differential equations with graded meshes. For simplicity but without loss of generality,
we consider the following special multi-pantograph delay differential equation case:

u′(t)= a(t)u(t)+b1(t)u(q1t)+b2(t)u(q2t)+ f (t), t∈ J :=[0,T], (1.2a)
u(0)=u0. (1.2b)

We analyze the optimal global convergence and local superconvergence of discontinuous
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Galerkin solutions for (1.2).
This paper is organized as follows. In Section 2, we describe the discontinuous

Galerkin method for the multi-pantograph delay differential equation (1.2). In Sections 3
and 4 we present the convergence results of DG solutions for smooth and weakly singu-
lar cases respectively. Section 5 illustrates numerical examples to confirm our theoretical
results. Conclusions are made in the last section.

2 The discontinuous Galerkin method

In this section, we introduce the DG method of the MPDDE (1.2). Let Jh be a partition of
the given interval J=[0,T] that divide J into N subintervals {In}N

n=1. Set

0= t0< t1< ···< tN =T,

and
In :=(tn−1,tn), hn := tn−tn−1.

We assume that the given functions a, b1, b2 in (1.2) are continuous on J. The correspond-
ing discontinuous finite element space is defined as

S(−1)
m (Jh)={v∈L2(J) : v|In ∈Pm, 1≤n≤N}.

Comparing with CG, the main difference of DG method is that there is no continuous
restrictions at the nodes {tn}N

n=0. Therefore, the left-hand and right-hand limits of the
elements v∈S(−1)

m (Jh) play an important role in the DG method. They are defined by

v+n := lim
s→0,s>0

v(tn+s), 0≤n≤N−1,

v−n := lim
s→0,s>0

v(tn−s), 1≤n≤N,

we denote [v]n :=v+n −v−n as the jump across at the interior node tn.
For the DG method, we are looking for an approximate solution U ∈ S(−1)

m (Jh) such
that

N

∑
n=1

∫
In

U′(t)v(t)dt+
N−1

∑
n=1

[U]nv+n +U+
0 v+0

=u0v+0 +
N

∑
n=1

∫
In

[a(t)U(t)+b1(t)U(q1t)+b2(t)U(q2t)+ f (t)]v(t)dt, ∀v∈S(−1)
m (Jh). (2.1)

Suppose that ln,1(t),··· ,ln,m+1(t)(s) are given basis functions on the subinterval In and
L1(s),··· ,Lm+1(s) are the corresponding basis functions on [0,1]. The discontinuous
Galerkin solution can be written as

Un(t)=
m+1

∑
j=1

un,jln,j(t)=
m+1

∑
j=1

un,jLj

( t−tn−1

hn

)
.
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It is obvious that the exact solution u of MPDDE (1.2) also satisfies (2.1), that is

N

∑
n=1

∫
In

u′(t)v(t)dt+
N−1

∑
n=1

[u]nv+n +u+
0 v+0

=u0v+0 +
N

∑
n=1

∫
In

[a(t)u(t)+b1(t)u(q1t)+b2(t)u(q2t)+ f (t)]v(t)dt, ∀v∈S(−1)
m (Jh). (2.2)

Hence, subtracting (2.2) from (2.1), and setting e :=u−U, we obtain

BDG(e,v) :=
N

∑
n=1

∫
In

(
e′(t)−a(t)e(t)−b1(t)e(q1t)−b2(t)e(q2t)

)
v(t)dt

+
N

∑
n=1

[e]n−1v+n−1=0. (2.3)

From (2.3) we have that the DG error e possesses the orthogonality property

BDG(e,v)=0, ∀v∈S(−1)
m (Jh).

The DG solution can be obtained on subinterval In, (n=1,··· ,N) by solving the following
system:∫

In

U′(t)v(t)dt+U+
n−1v+n−1

=U−n−1v+n−1+
∫

In

[a(t)U(t)+b1(t)U(q1t)+b2(t)U(q2t)+ f (t)]v(t)dt, ∀v∈Pm(In). (2.4)

Here, we let U−0 :=u0.
In order to write the detailed computational scheme of (2.4), we define some vectors

g1 :=
(

L1(0),··· ,Lm+1(0)
)T

, (2.5a)

fn :=
(∫ 1

0
f (tn−1+shn)L1(s)ds,··· ,

∫ 1

0
f (tn−1+shn)Lm+1(s)ds

)T
, (2.5b)

Un :=(un,1,··· ,un,m+1)
T∈ IRm+1, (2.5c)

and the following matrices (in IR(m+1)×(m+1))

M :=
(∫ 1

0
L′j(t)Li(t)dt+Lj(0)Li(0)

)
1≤i,j≤m+1

, (2.6a)

An :=
(∫ 1

0
a(tn−1+shn)Lj(s)Li(s)ds

)
1≤i,j≤m+1

, (2.6b)

G :=
(

Lj(1)Li(0)
)

1≤i,j≤m+1
. (2.6c)
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The contributions of the delay terms
∫

In
bi(t)U(qit)v(t)dt, (i= 1,2) are governed by cer-

tain relationships between the values n and qi of the delay functions qit. Therefore, the
analysis of these delay items are the most important steps in the whole computational
form. We have the following three cases depending on the images qit (assume q1>q2) :

• For n=1, we call the complete overlap: for any t∈ I1 the images qit, (i=1,2) lie in
I1.

• If q1tn > tn−1, (n≥2), we call the partial overlap: for some t∈ In the images q1t are
still in In, while for other (smaller) t∈ In we have q1t 6∈ In.

• If q1tn ≤ tn−1, (n≥ 2), we call the non-overlap: the images qit, (t∈ In, i = 1,2) no
longer have any overlap with In.

We give a brief idea of how to get the computational form of the multi-pantograph
equation (1.2) by using DG method.
(1) In the first subinterval I1, the images q1t and q2t both lie in I1. We define the matrix

BI
1 :=

(∫ 1

0
b1(hs)Lj(q1s)Li(s)ds

)
1≤i,j≤m+1

,

BI
2 :=

(∫ 1

0
b2(hs)Lj(q2s)Li(s)ds

)
1≤i,j≤m+1

.

Then the vector U1 is determined by the solution of linear algebraic system(
M−h1A1−h1BI

1−h1BI
2

)
U1=u0g1+h1f1. (2.7)

(2) If q1tn > tn−1, (n≥2), in this phase, there is an integer θ1 such that q1tn−1∈ Iθ1+1. Let
s∗0 = 0 and 0< s∗1 ,··· ,s∗n−1−θ1

< 1 satisfying q1(tn−1+s∗k1
hn)= tθ1+k1 for k1 = 1,··· ,n−1−θ1.

Then we have

s∗k1
:=
( tθ1+k1

q1
−tn−1

)/
hn∈ (0,1), k1=1,··· ,n−1−θ1.

For k1=1,··· ,n−1−θ1, we define

BI I
n,k1

:=
(∫ s∗k1

s∗k1−1

b1(tn−1+shn)Lj

(q1(tn−1+shn)−tθ1+k1−1

hθ1+k1

)
Li(s)ds

)
1≤i,j≤m+1

,

BI I
n,2 :=

(∫ 1

s∗n−1−θ1

b1(tn−1+shn)Lj

(q1(tn−1+shn)−tn−1

hn

)
Li(s)ds

)
1≤i,j≤m+1

.

(i) If q2tn > tn−1, in a similar way, there is an integer θ2 such that q2tn−1 ∈ Iθ2+1. Let
s∗0 =0 and 0< s∗1 ,··· ,s∗n−θ2−1<1 satisfying q2(tn−1+s∗k2

hn)= tθ2+k2 . Then we have

s∗k2
:=
( tθ2+k2

q2
−tn−1

)/
hn∈ (0,1), k2=1,··· ,n−1−θ2,
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and define

BI I
n,k2

:=
(∫ s∗k2

s∗k2−1

b2(tn−1+shn)Lj

(q2(tn−1+shn)−tθ2+k2−1

hθ2+k2

)
Li(s)ds

)
1≤i,j≤m+1

,

BI I
n,4 :=

(∫ 1

s∗n−1−θ2

b2(tn−1+shn)Lj

(q2(tn−1+shn)−tn−1

hn

)
Li(s)ds

)
1≤i,j≤m+1

.

In this phase, Un is given by the solution of the linear algebraic system

(M−hn An−hnBI I
n,2−hnBI I

n,4)Un

=hn

n−1−θ1

∑
k1=1

BI I
n,k1

Uθ1+k1+hn

n−1−θ2

∑
k2=1

BI I
n,k2

Uθ2+k2+GUn−1+hnfn. (2.8)

(ii) If q2tn≤ tn−1, in this phase, there are two integers θ2,0 and θ2,1 (θ2,0 < θ2,1), such
that q2tn−1 ∈ Iθ2,0+1 and q2tn ∈ Iθ2,1+1. Let s∗0 = 0, 0< s∗1 ,··· ,s∗θ2,1−θ2,0

< 1 and s∗θ2,1−θ2,0+1 = 1
satisfying q2(tn−1+s∗k2

∗hn)= tθ2,0+k2 . Then we have

s∗k2
:=
( tθ2,0+k2

q2
−tn−1

)/
hn∈ (0,1), k2=1,··· ,θ2,1−θ2,0+1,

and define

BI I I
n,k2

:=
(∫ s∗k2

s∗k2−1

b2(tn−1+shn)Lj

(q2(tn−1+shn)−tθ2,0+k2−1

hθ2,0+k2

)
Li(s)ds

)
1≤i,j≤m+1

.

In this phase, Un is the solution of the linear algebraic system

(M−hn An−hnBI I
n,2)Un

=hn

θ2,1−θ2,0+1

∑
k2=1

BI I I
n,k2

Uθ2,0+k2+hn

n−1−θ1

∑
k1=1

BI I
n,k1

Uθ1+k1+GUn−1+hnfn. (2.9)

(3) If q1tn≤ tn−1, (n≥2), in this phase, there are two integers θ1,0 and θ1,1 (θ1,0<θ1,1), such
that q1tn−1 ∈ Iθ1,0+1 and q1tn ∈ Iθ1,1+1. Let s∗0 = 0, 0< s∗1 ,··· ,s∗θ1,1−θ1,0

< 1 and s∗θ1,1−θ1,0+1 = 1
satisfying q1(tn−1+s∗k1

∗hn)= tθ1,0+k1 . Then we have

s∗k1
:=
( tθ1,0+k1

q1
−tn−1

)/
hn∈ (0,1), k1=1,··· ,θ1,1−θ1,0+1,

and define

BI I I
n,k1

:=
(∫ s∗k1

s∗k1−1

b1(tn−1+shn)Lj

(q1(tn−1+shn)−tθ1,0+k1−1

hθ1,0+k1

)
Li(s)ds

)
1≤i,j≤m+1

.
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Since q1>q2, for this reason, q2tn < tn−1, the expression of BI I I
n,k2

is same with (2)(ii). In
this phase, Un is given by the solution of the linear algebraic system

(M−hn An)Un

=hn

θ2,1−θ2,0+1

∑
k2=1

BI I I
n,k2

Uθ2,0+k2+hn

θ1,1−θ1,0+1

∑
k1=1

BI I I
n,k1

Uθ1,0+k1+GUn−1+hnfn. (2.10)

3 Convergence analysis of MPDDE with smooth solutions

In this section, we present and analyze the global convergence and local superconver-
gence of the DG solution for the multi-pantograph delay differential equation (1.2) with
smooth solutions on uniform meshes. Firstly, we briefly discuss the existence and unique-
ness of the DG solution which defined by the solutions of the linear algebraic systems
(2.7)-(2.10).

For simplicity we select the uniform mesh Jh for the interval J=[0,T],

Jh ={tn :=nh, n=0,1,··· ,N}, h=
T
N

.

3.1 Existence and uniqueness of the DG solution

Theorem 3.1. Assume that the given functions a, b1, b2 and f in (1.2) are continuous on J. Then
for any q1,q2∈(0,1) there exists h̄>0 (depending on q1 and q2) such that for all h∈(0,h̄) each of
the linear algebraic systems (2.7)-(2.10) possesses a unique solution Un∈ IRm+1.

Proof. Considering the structure of the matrices

M−h1A1−h1BI
1−h1BI

2, M−hn An−hnBI I
n,2−hnBI I

n,4, M−hn An−hnBI I
n,2, M−hn An,

which describe the left-hand sides of the linear algebraic systems (2.7)-(2.10), and the
given functions a, b1 and b2 are in C(J). It is easy to show that M=(Mi,j), (1≤ i, j≤m+1)
is nonsingular [13]. The non-singularity of M leads to the non-singularity of (2.7)-(2.10)
when h is sufficiently small. Therefore, for any q1,q2 ∈ (0,1) there exists a positive h̄ so
that for all h∈ (0,h̄) and 1≤ n≤N, (2.4) defines a unique DG solution U ∈ S(−1)

m (Jh) for
Eq. (1.2).

3.2 Global convergence analysis

First we need to introduce an appropriate interpolation operator Πh which is very im-
portant in the convergence analysis. The interpolation operator Πh : C[0,1]→S(−1)

m−1(Jh) is
defined by

Πhu(t−n )=u(t−n ), (3.1a)∫
In

Πhuvdt=
∫

In

uvdt, ∀v∈Pm−1(In), m≥1. (3.1b)
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It is obvious that the interpolation operator admits the error estimates

‖u−Πhu‖In,∞≤Chm+1‖u‖In,m+1,∞. (3.2)

To analyze the convergence of finite element approximations, we split the error by
writing e :=u−U=(u−Πhu)+(Πhu−U)=:ξ+η. We can see from (3.2) that the estimates
of ξ are available, so we only need to establish the estimate of η. It then follows readily
from the orthogonality property of the DG solution that η satisfies∫

In

η′vdt+η+
n−1v+n−1

=η−n−1v+n−1+
∫

In

(a(t)e(t)+b1(t)e(q1t)+b2(t)e(q2t))v(t)dt, ∀v∈Pm(In). (3.3)

Using the integration by parts, we have

−
∫

In

ηv′dt+η−n v−n

=η−n−1v+n−1+
∫

In

(a(t)e(t)+b1(t)e(q1t)+b2(t)e(q2t))v(t)dt, ∀v∈Pm(In), (3.4)

where η−0 =0.
Then we carry out the convergence analysis results of MPDDE (1.2) by using the DG

method.

Theorem 3.2. Assume:

(i) The functions a, b1, b2, f describing the MPDDE (1.2) are in Cm(I).

(ii) u∈Wm+1,∞([0,T]) is the exact solution of the MPDDE (1.2).

(iii) U∈S(−1)
m (Jh) is the DG solution defined by (2.4).

(iv) Jh is a uniform mesh for J :=[0,T].

We obtain the following optimal global convergence estimates :

‖u−U‖∞≤Chm+1‖u‖m+1,∞. (3.5)

Proof. In order to prove the estimates (3.5), we first obtain the result

‖u−U‖∞≤C‖u−Πhu‖∞

by using induction, then combine the interpolation error estimate (3.2) we will deduce
that (3.5) is true. Let v=η in (3.3) and (3.4), summation of these two formulas and using
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the Hölder inequality then yields

|η+
n−1|

2+|η−n |2

=2
∫

In

(a(t)e(t)+b1(t)e(q1t)+b2(t)e(q2t))η(t)dt+2η−n−1η+
n−1

≤2ā
∫

In

|ξ(t)+η(t)||η(t)|dt+2b̄1

∫
In

|ξ(q1t)+η(q1t)||η(t)|dt

+2b̄2

∫
In

|ξ(q2t)+η(q2t)||η(t)|dt+|η−n−1|
2+|η+

n−1|
2

≤ā
∫

In

(|ξ(t)|2+3|η(t)|2)dt+ b̄1

∫
In

(|ξ(q1t)|2+|η(q1t)|2+2|η(t)|2)dt

+ b̄2

∫
In

(|ξ(q2t)|2+|η(q2t)|2+2|η(t)|2)dt+|η−n−1|
2+|η+

n−1|
2

≤(3ā+2b̄1+2b̄2)
∫

In

|η(t)|2dt+ ā
∫

In

|ξ(t)|2dt+ b̄1

∫
In

|η(q1t)|2dt

+ b̄1

∫
In

|ξ(q1t)|2dt+ b̄2

∫
In

|η(q2t)|2dt+ b̄2

∫
In

|ξ(q2t)|2dt+|η−n−1|
2+|η+

n−1|
2,

where

ā := max
t∈[0,T]

|a(t)|, b̄1 := max
t∈[0,T]

|b1(t)| and b̄2 := max
t∈[0,T]

|b2(t)|.

Eliminating the term |η+
n−1|2, we get

|η−n |2≤(3ā+2b̄1+2b̄2)
∫

In

|η(t)|2dt+ ā
∫

In

|ξ(t)|2dt

+ b̄1

∫
In

|ξ(q1t)|2dt+ b̄1

∫
In

|η(q1t)|2dt

+ b̄2

∫
In

|ξ(q2t)|2dt+ b̄2

∫
In

|η(q2t)|2dt+|η−n−1|
2. (3.6)

Let v=η′(t)(t−tn−1) in (3.3) and we obtain∫
In

|η′(t)|2(t−tn−1)dt

=
∫

In

a(t)e(t)η′(t)(t−tn−1)dt+
∫

In

b1(t)e(q1t)η′(t)(t−tn−1)dt

+
∫

In

b2(t)e(q2t)η′(t)(t−tn−1)dt

≤ ā
(∫

In

|e(t)|2(t−tn−1)dt
) 1

2

·
(∫

In

|η′(t)|2(t−tn−1)dt
) 1

2

+ b̄1

(∫
In

|e(q1t)|2(t−tn−1)dt
) 1

2

·
(∫

In

|η′(t)|2(t−tn−1)dt
) 1

2
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+ b̄2

(∫
In

|e(q2t)|2(t−tn−1)dt
) 1

2

·
(∫

In

|η′(t)|2(t−tn−1)dt
) 1

2

.

Thus, ∫
In

|η′(t)|2(t−tn−1)dt

≤2ā2
∫

In

|e(t)|2(t−tn−1)dt+2b̄1
2
∫

In

|e(q1t)|2(t−tn−1)dt

+2b̄2
2
∫

In

|e(q2t)|2(t−tn−1)dt

≤4ā2h
∫

In

(|ξ(t)|2+|η(t)|2)dt+4b̄1
2h
∫

In

(|ξ(q1t)|2+|η(q1t)|2)dt

+4b̄2
2h
∫

In

(|ξ(q2t)|2+|η(q2t)|2)dt. (3.7)

Let v= tn−1−t in (3.4), we find∫
In

η(t)dt−hη−n =
∫

In

(a(t)e(t)+b1(t)e(q1t)+b2(t)e(q2t))(tn−1−t)dt.

Then we square both sides of the above equation and obtain(∫
In

η(t)dt
)2

≤3h2|η−n |2+3
(∫

In

a(t)e(t)(tn−1−t)dt
)2

+3
(∫

In

b1(t)e(q1t)(tn−1−t)dt
)2

+3
(∫

In

b2(t)e(q2t)(tn−1−t)dt
)2

≤3h2|η−n |2+ ā2h3
∫

In

|e(t)|2dt+ b̄1
2h3
∫

In

|e(q1t)|2dt+ b̄2
2h3
∫

In

|e(q2t)|2dt

≤3h2|η−n |2+2ā2h3
∫

In

(|ξ(t)|2+|η(t)|2)dt

+2b̄1
2h3
∫

In

(|ξ(q1t)|2+|η(q1t)|2)dt+2b̄2
2h3
∫

In

(|ξ(q2t)|2+|η(q2t)|2)dt. (3.8)

By (3.6)-(3.8), we have following inequalities:

|η−1 |
2≤C(ā+ b̄1+ b̄2)

∫
I1

|η(t)|2dt+C(ā+ b̄1+ b̄2)
∫

I1

|ξ(t)|2dt+|η−0 |
2, (3.9a)∫

I1

|η′(t)|2(t−t0)dt≤C(ā2+ b̄1
2
+ b̄2

2
)h
∫

I1

(|ξ(t)|2+|η(t)|2)dt, (3.9b)
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and (∫
I1

η(t)dt
)2

≤3h2|η−1 |
2+C(ā2+ b̄1

2
+ b̄2

2
)h3

∫
I1

(|ξ(t)|2+|η(t)|2)dt, (3.10)

where the constant C depend on q1 and q2, but independent of h.
Now we analyze the error estimate on I1, we first introduce two useful lemmas.

Lemma 3.1 ([13]). Assume that I=(a,b), for all ω∈Pr((a,b),IR), r∈ IN0, then∫ b

a
|ω|2dt≤ 1

b−a

(∫ b

a
ω(t)dt

)2
+

1
2

∫ b

a
(b−t)(t−a)|ω′(t)|2dt. (3.11)

Lemma 3.2 ([13]). Assume that I=(a,b), a function ω defined in (a,b). Then the estimate

‖ω‖2
∞≤Clog(r+1)

∫ b

a
|ω′(t)|2(t−a)dt+C|ω(b)|2, (3.12)

holds for all ω∈Pr((a,b),IR), r∈ IN0. C denotes a positive constant which is independent of the
partition.

We combine Lemma 3.1 with (3.10) and obtain(∫
I1

η(t)dt
)2
≤Ch2|η−1 |

2+Ch3(ā2+ b̄1
2
+ b̄2

2
)
∫

I1

|ξ(t)|2dt

+Ch2(ā2+ b̄1
2
+ b̄2

2
)
(∫

I1

η(t)dt
)2

+Ch4(ā2+ b̄1
2
+ b̄2

2
)
∫

I1

|η′(t)|2(t−t0)dt. (3.13)

For sufficiently small h2(ā2+ b̄1
2
+ b̄2

2
), the third term on the right-hand side can be ab-

sorbed into the left-hand side. Then(∫
I1

η(t)dt
)2
≤Ch2|η−1 |

2+Ch3(ā2+ b̄1
2
+ b̄2

2
)
∫

I1

|ξ(t)|2dt

+Ch4(ā2+ b̄1
2
+ b̄2

2
)
∫

I1

|η′(t)|2(t−t0)dt. (3.14)

By Lemma 3.1 and (3.6)-(3.8), we can derive∫
I1

|η′(t)|2(t−t0)dt+|η−1 |
2

≤C(ā+ b̄1+ b̄2)
∫

I1

|ξ(t)|2dt+C(ā+ b̄1+ b̄2)
∫

I1

|η(t)|2dt+|η−0 |
2

≤C(ā+ b̄1+ b̄2)
∫

I1

|ξ(t)|2dt+
C(ā+ b̄1+ b̄2)

h

(∫
I1

η(t)dt
)2

+C(ā+ b̄1+ b̄2)h
∫

I1

|η′(t)|2(t−t0)dt+|η−0 |
2.
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Substituting (3.14) into the above formula yields∫
I1

|η′(t)|2(t−t0)dt+|η−1 |
2

≤Ch(ā+ b̄1+ b̄2)
∫

I1

|η′(t)|2(t−t0)dt+Ch(ā+ b̄1+ b̄2)|η−1 |
2

+C(ā+ b̄1+ b̄2)
∫

I1

|ξ(t)|2dt+|η−0 |
2. (3.15)

For n=1, we can obtain

‖η‖2
I1,∞≤C

∫
I1

|η′(t)|2(t−t0)dt+C|η−1 |
2≤C(ā+ b̄1+ b̄2)

∫
I1

|ξ(t)|2dt. (3.16)

This readily leads to

‖η‖I1,∞≤C‖ξ‖[0,t1],∞. (3.17)

We now turn to establishing the error estimates for n≥ 2. In order to use an induction
argument, assume that the estimate

‖η‖Ik ,∞≤C‖ξ‖[0,tk ],∞ (3.18)

is valid for k=1,2,··· ,n−1. Consider the case k=n.(∫
In

η(t)dt
)2

≤Ch2|η−n |2+Ch3(ā2+ b̄1
2
+ b̄2

2
)
∫

In

|ξ(t)|2dt+Ch2(ā2+ b̄1
2
+ b̄2

2
)
(∫

In

η(t)dt
)2

+Ch4(ā2+ b̄1
2
+ b̄2

2
)
∫

In

|η′(t)|2(t−tn−1)dt

+Ch3b̄1
2
∫

In

(|ξ(q1t)|2+|η(q1t)|2)dt+Ch3b̄2
2
∫

In

(|ξ(q2t)|2+|η(q2t)|2)dt

≤Ch2|η−n |2+Ch3(ā2+ b̄1
2
+ b̄2

2
)
∫

In

|ξ(t)|2dt+Ch2(ā2+ b̄1
2
+ b̄2

2
)
(∫

In

η(t)dt
)2

+Ch4(ā2+ b̄1
2
+ b̄2

2
)
∫

In

|η′(t)|2(t−tn−1)dt

+Ch3b̄1
2
∫

In

|ξ(q1t)|2dt+Ch3b̄2
2
∫

In

|ξ(q2t)|2dt. (3.19)

For sufficiently small h2(ā2+ b̄1
2
+ b̄2

2
), the third term on the right-hand side also can be

absorbed into the left-hand side. We obtain(∫
In

η(t)dt
)2
≤Ch2|η−n |2+Ch3(ā2+ b̄1

2
+ b̄2

2
)
∫

In

|ξ(t)|2dt+Ch3
∫

In

|ξ(q1t)|2dt

+Ch3
∫

In

|ξ(q2t)|2dt+Ch4(ā2+ b̄1
2
+ b̄2

2
)
∫

In

|η′(t)|2(t−tn−1)dt, (3.20)
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and ∫
In

|η′(t)|2(t−tn−1)dt+|η−n |2

≤C(ā+ b̄1+ b̄2)
∫

In

|ξ(t)|2dt+C(ā+ b̄1+ b̄2)
∫

In

|η(t)|2dt+|η−n−1|
2

+Cb̄1

∫
In

(|ξ(q1t)|2+|η(q1t)|2)dt+Cb̄2

∫
In

(|ξ(q2t)|2+|η(q2t)|2)dt

≤C(ā+ b̄1+ b̄2)
∫

In

|ξ(t)|2dt+
C(ā+ b̄1+ b̄2)

h

(∫
In

η(t)dt
)2

+C(ā+ b̄1+ b̄2)h
∫

In

|η′(t)|2(t−tn−1)dt+|η−n−1|
2

+Cb̄1

∫
In

|ξ(q1t)|2dt+Cb̄2

∫
In

|ξ(q2t)|2dt,

then∫
In

|η′(t)|2(t−tn−1)dt+|η−n |2

≤Ch(ā+ b̄1+ b̄2)
∫

In

|η′(t)|2(t−tn−1)dt+Ch(ā+ b̄1+ b̄2)|η−n |2

+C(ā+ b̄1+ b̄2)
∫

In

|ξ(t)|2dt+|η−n−1|
2+Cb̄1

∫
In

|ξ(q1t)|2dt+Cb̄2

∫
In

|ξ(q2t)|2dt. (3.21)

Iterating the estimate (3.21) yields∫
In

|η′(t)|2(t−tn−1)dt+|η−n |2

≤C(ā+ b̄1+ b̄2)
n

∑
i=1

h
(∫

Ii

|η′(t)|2(t−ti−1)dt+|η−i |
2
)

+C(ā+ b̄1+ b̄2)
n

∑
i=1

∫
Ii

|ξ(t)|2dt+C
n

∑
i=1

∫
Ii

|ξ(q1t)|2dt+C
n

∑
i=1

∫
Ii

|ξ(q2t)|2dt. (3.22)

For sufficiently small h(ā+ b̄1+ b̄2), Gronwall’s Lemma can be applied, this leads to∫
In

|η′(t)|2(t−tn−1)dt+|η−n |2

≤C(ā+ b̄1+ b̄2)T
n

∑
i=1

(∫
Ii

(|ξ(t)|2+|ξ(q1t)|2)dt+|ξ(q2t)|2)dt
)

exp(C(ā+ b̄1+ b̄2)T)

≤C(ā+ b̄1+ b̄2)exp(C(ā+ b̄1+ b̄2)T)T(‖ξ‖2
∞). (3.23)

Using (3.17), (3.18), (3.23), for 1≤ k≤N we obtain the result

‖u−U‖∞≤C‖u−Πhu‖∞.

This completes the proof.



202 K. Jiang, Q. M. Huang and X. X. Xu / Adv. Appl. Math. Mech., 12 (2020), pp. 189-211

3.3 Local superconvergence analysis

The following theorem shows that the DG solution of the MPDDE (1.2) has the property
of the higher local superconvergence order at the mesh points and Radau II points.

We first recall the definition of the Radau II points in each subinterval In. Let {pn,i(t) :
i≥0} denote the set of Legendre polynomials defined on a given subinterval In, and set

u(t)=
∞

∑
i=0

cn,i pn,i(t), with cn,i :=(2i+1)
∫

In

u(s)·pn,i(s)ds, t∈ In. (3.24)

Then the zeros of the polynomial pn,m+1(t)−pn,m(t) define the m+1 Radau II points in
In.

Theorem 3.3. Under the assumptions stated in Theorem 3.2,

(i) Assume that u∈Wm+1,∞(J), the attainable order of the DG solution U∈S(−1)
m (Jh) for (1.2) at

the mesh points Jh\{0} of a uniform mesh is given by

max
1≤n≤N

|(u−U−n )(tn)|≤Chm+2‖u‖m+1,∞, if m≥1. (3.25)

If u∈Wd,∞(J) for some d≥m+2, then the term hm+2 cannot be replaced by hp with p>m+2.

(ii) Assume that u∈Wm+2,∞(J), the attainable order of the DG solution U∈S(−1)
m (Jh) for (1.2)

at the Radau II points is given by

|u(tnr)−U(tnr)|≤Chm+2‖u‖m+2,∞, (3.26)

where tnr stands for any of the Radau II points in In, (1≤n≤N).

Proof. In order to prove the superconvergence of the DG solution uh at the mesh points,
we introduce the following auxiliary problem associated with the MPDDE (1.2):

φ′(t)+a(t)φ(t)+ b̃1(t)φ
( t

q1

)
+ b̃2(t)φ

( t
q2

)
=0, t∈ [0,tn), (3.27a)

φ(tn)=α := e−n . (3.27b)

Here, 1≤n≤N and b̃1(t) and b̃2(t) are defined by

b̃1(t) :=


1
q1

b(t/q1), 0≤ t≤q1tn,

0, q1tn < t≤ tn,

b̃2(t) :=


1
q2

b(t/q2), 0≤ t≤q2tn,

0, q2tn < t≤ tn.
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From the discontinuity of the function b̃1(t) and b̃2(t), we see that the function φ′(t) is
discontinuous at the points q1tn and q2tn, and we have |φ′(q1tn)|≤C|α|, |φ′(q2tn)|≤C|α|.
Furthermore, |Diφ(t)|≤C|α|, for t 6= q1tn and t 6= q2tn. Thus, we use the initial condition
e−0 =0, and obtain the following relation:

B(e,φ) :=
n

∑
j=1

{∫
Ij

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))φ(s)ds+[e]j−1φ+
j−1

}
=

n

∑
j=1

{
(eφ)−j −(e

−φ−)j−1

−
∫

Ij

e(s)(φ′(s)+a(s)φ(s)+ b̃1(s)φ(s/q1)+ b̃2(s)φ(s/q2))ds
}

=(eφ)−n = |e−n |2. (3.28)

Assume now that φh ∈ S(−1)
m (Jh) is the (continuous) m-th degree piecewise polynomial

interpolant of φ (that is, (φ−φh)
+
j =0), and let m≥1. Hence, recalling the orthogonality

relations of the DG solution and the exact solution, we have

|e−n |2=B(e,φ)=B(e,φ−φh)

=
n

∑
j=1

∫
Ij

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

=
n∗2−1

∑
j=1

∫
Ij

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

+
∫

In∗2

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

+
n∗1−1

∑
j=n∗2+1

∫
Ij

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

+
∫

In∗1

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

+
n

∑
j=n∗1+1

∫
Ij

(e′(s)−a(s)e(s)−b1(s)e(q1s)−b2(s)e(q2s))(φ(s)−φh(s))ds

≤C‖e‖1,∞,[0,tn∗2−1]
‖φ−φh‖0,1,[0,tn∗2−1]

+C‖e‖1,∞,(tn∗2−1,tn∗2
)‖φ−φh‖0,1,(tn∗2−1,tn∗2

)+C‖e‖1,∞,[tn∗2
,tn∗1−1]

‖φ−φh‖0,1,[tn∗2
,tn∗1−1]

+C‖e‖1,∞,(tn∗1−1,tn∗1
)‖φ−φh‖0,1,(tn∗1−1,tn∗1

)+C‖e‖1,∞,[tn∗1
,tn]‖φ−φh‖0,1,[tn∗1

,tn] (3.29)

≤Chmhm+1‖u‖m+1,∞,[0,tn∗2−1]
|e−n |

+Chmh‖u‖m+1,∞,(tn∗2−1,tn∗2
)|φ′(t)|∞,(tn∗2−1,tn∗2

)meas((tn∗2−1,tn∗2 ))
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+Chmhm+1‖u‖m+1,∞,[tn∗2
,tn∗1−1]

|e−n |

+Chmh‖u‖m+1,∞,(tn∗1−1,tn∗1
)|φ′(t)|∞,(tn∗1−1,tn∗1

)meas((tn∗1−1,tn∗1 ))

+Chmhm+1‖u‖m+1,∞,[tn∗1
,tn]|e

−
n | (3.30)

≤Chm+2‖u‖m+1,∞,[0,tn]|e
−
n |. (3.31)

Here q1tn∈(tn∗1−1,tn∗1 ) and q2tn∈(tn∗2−1,tn∗2 ). Since q1tn>q2tn, we have tn∗1≥tn∗2 and n∗1≥n∗2 .
We consider the case of n∗2 < n∗1−1 above, all the third terms of (3.31)-(3.29) are omitted
when n∗2 =n∗1−1 and n∗2 =n∗1 . The estimate (3.31) implies that

|e−n |≤Chm+2‖u‖m+1,∞, n=1,··· ,N.

This means that we have established the desired result (3.25) for all m≥ 1. The proof of
(3.26) is similar to one delay term (see [14, pp. 2670]). We leave it to the reader.

4 Convergence analysis of weakly singular MPDDE

The convergence results in Theorems 3.2 and 3.3 are valid for solutions that sufficiently
smooth in [0,T]. However, this regularity assumption is unrealistic if f (the right hand
side term) is weakly singular. Since solutions of MPDDEs (1.2) have strong start-up sin-
gularities [20] due to the presence of f . In this section we show that despite the solu-
tion has a singularity at t=0, we can also obtain the algebraic convergence with graded
meshes by the DG method.

We suppose the singular term f has the form

f (t)= f1(t)+tβ f2(t), β∈ (0,1). (4.1)

If the partition {In}N
n=1 are given by

Ĵn =
{

tn :=
( n

N

)r
T, n=0,··· ,N

}
,

where the grading exponent r∈R will always be assumed to satisfy r>1, then Ĵn is called
the graded mesh. For any such mesh we have 0<h1< ···<hN .

As a special case of [20] in which mn=m, the following lemmas describe the approxi-
mation properties of the interpolant Πhu under graded meshes.

Lemma 4.1. Let Ĵn be a graded mesh for the given interval [0,T], set In=(tn−1,tn), hn=tn−tn−1,
m∈ IN0, and u∈Ws0+1,∞(In), for some s0≥0. Then we have

‖u−Πhu‖2
In,∞≤C

(
hn

2

)2s+2 Γ(m+1−s)
Γ(m+1+s)

‖u‖2
In,s+1,∞, (4.2)

for any real s with 0≤ s≤min(m,s0), and

‖u−U‖∞≤C‖u−Πhu‖∞. (4.3)
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Lemma 4.2. Let γ= 1+β and Ĵn be a graded mesh of [0,T]. The constant C,d> 0 depending
only on the analyticity constants of a, b1, b2, f1 and f2, such that the solution u of MPDDE (1.2)
satisfies

‖u‖2
I1,1,∞≤C, (4.4a)

|u(s)(t)|≤CdsΓ(s+1)tγ−s, t∈ (0,T], s∈N. (4.4b)

The next result establishes the convergence of the DG method for weakly singular
MPDDEs.

Theorem 4.1. Assume:
(i) The functions a, b1, b2, f1, f2 describing the MPDDE (1.2) are in Cm(I).
(ii) u∈Wγ,∞([0,t1])∪Wm+1,∞((t1,T]) is the exact solution of MPDDE (1.2).

(iii) U∈S(−1)
m (Jh) is the DG solution defined by (2.4).

(iv) Ĵn is a graded mesh for J :=[0,T], with grading exponent r≥m+1.
We obtain the following optimal global convergence estimates :

‖u−U‖∞≤Chm+1, (h :=T/N). (4.5)

Proof. Since the solution has singularity at t1 =0, we particularly bound the errors at the
first interval Ĵ1. From Lemma 4.1,

‖u−U‖2
∞≤C max

1≤n≤N+1
e2

n

with

e2
n =C

(
hn

2

)2s+2 Γ(m+1−s)
Γ(m+1+s)

‖u‖2
In,s+1,∞.

For the first subinterval Ĵ1, since s=0, we have from (4.4a)

‖e1‖∞≤Ch1.

Since h1=( 1
N )rT, r≥m+1, then

‖e1‖∞≤Chm+1.

From (4.4b), the regularity exponents s can be chosen arbitrary large for n=2,··· ,N. The
solution become smooth after a non-smooth initial phase. For n≥ 2 the convergence
analysis can be proved by using similar techniques in Theorem 3.2.

The following theorem gives the result of the local superconvergence.

Theorem 4.2. Under the same assumptions in Theorem 4.1.
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(i) The attainable superconvergence order of DG solution at the mesh points of the graded mesh is
given by

max
1≤n≤N+1

|(u−U−n )(tn)|≤Chm+2, if m≥1. (4.6)

(ii) The attainable superconvergence order of DG solution at the Radau II points of the graded
mesh is given by

|u(tnr)−U(tnr)|≤Chm+2. (4.7)

Proof. The proof here is similar to the proof of Theorem 3.3. We leave it to the reader.

Remark 4.1. The DG method can also be used to solve system of MPDDEs with smooth
and weakly singular solutions. By constructing high-dimensional linear algebraic sys-
tems and similar to (2.7)-(2.10), we can obtain the global convergence and local super-
convergence both on uniform meshes and on graded meshes (see Example 5.3 of Section
5).

Remark 4.2. We can extend the DG method for MPDDEs to the general nonlinear case.
In our future work, we will consider DG method for nonlinear MPDDEs including the
nonlinear delay functions and the nonlinear problems.

5 Numerical experiments

In this section, we present several numerical experiments to verify the accuracy and effi-
ciency of the theoretical analysis. We use the following notations:

erg= ||u−U||∞, R=
log(ergN1/ergN2)

log(hN1/hN2)
,

ern= max
1≤n≤N

|u(tn)−U(tn)|, Rn =
log(ernN1/ernN2)

log(hN1/hN2)
,

err= max
1≤n≤N

1≤r≤m+1

|u(tnr)−U(tnr)|, Rr =
log(errN1/errN2)

log(hN1/hN2)
,

where tnr denote Radau II points, and tn denote the nodal points.

Example 5.1. We consider the following multi-pantograph equation

u′(t)=−u(t)+b1(t)u(0.5t)+b2(t)u(0.25t), 0< t≤1,
u(0)=1,

where b1(t)=−e−0.5t sin(0.5t), b2(t)=−2e−0.75t cos(0.5t)sin(0.25t).
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The exact solution u(t)= e−t cos(t) is analytic on [0,1]. We choose uniform meshes Jh
with mesh size h=1/N, (N=16,32,64,···). Numerical results are obtained by the piece-
wise linear DG approximation (m=1) and by the piecewise quadratic DG approximation
(m=2).
(1) Errors of piecewise linear DG solutions (m=1):

Table 1: Errors of piecewise linear DG solution.

N erg R ern Rn err Rr
16 3.6144e-04 3.1019e-06 2.7784e-06
32 9.0804e-04 1.9929 3.9670e-07 2.9671 3.4883e-07 2.9936
64 2.2763e-05 1.9961 4.9822e-08 2.9932 4.3661e-08 2.9981

128 5.6994e-06 1.9978 6.2474e-09 2.9955 5.4600e-09 2.9994

(2) Errors of piecewise quadratic DG solutions (m=2):

Table 2: Errors of piecewise quadratic DG solution.

N erg R ern Rn err Rr
8 4.0397e-05 6.6310e-07 2.3693e-07
16 5.4428e-06 2.8918 4.3674e-08 3.9244 1.4603e-08 3.9834
32 7.0587e-07 2.9469 2.8009e-09 3.9628 9.2321e-10 4.0202
64 8.9860e-08 2.9737 1.7731e-10 3.9816 5.6566e-11 4.0287

We conclude from Tables 1-2 that

‖u−U‖∞ =O(hm+1), (5.1a)

max
1≤n≤N

1≤r≤m+1

|u(tnr)−U(tnr)|=O(hm+2), (5.1b)

max
1≤n≤N

|u(tn)−Un|=O(hm+2), m=1,2. (5.1c)

This confirms the correctness of theoretical results.

Example 5.2. We consider the MPDDE with weakly singular solution

u′(t)=−u(t)+
1
2

u
(1

3
t
)
+

1
2

u
(1

4
t
)
+ f (t), 0< t≤1,

u(0)=1.

Where f (t) is set to make the exact solution u(t)= t1.5e−t.

It is obvious that the function f (t) has the form (4.1) with β= 0.5, the solution only
satisfies u∈W1.5,∞. Numerical results are obtained by the piecewise quadratic DG ap-
proximation with graded meshes.
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Table 3: Errors of piecewise quadratic DG solution, r=3.

N erg R ern Rn err Rr
60 4.3317e-07 1.6985e-09 3.8711e-09
120 5.7381e-08 2.9520 1.0123e-10 4.1182 2.4176e-10 4.0500
180 1.7279e-08 2.9805 2.3632e-11 3.8128 4.8626e-11 3.9827
240 7.3663e-09 2.9780 7.8241e-12 3.8611 1.4979e-11 4.1129

Table 4: Errors of piecewise quadratic DG solution, r=3.5.

N erg R ern Rn err Rr
60 6.7591e-07 1.7801e-09 6.0691e-09
120 8.9830e-08 2.9116 1.7162e-10 3.8747 3.8740e-10 3.9696
180 2.7287e-08 2.9386 4.2109e-11 3.8653 7.7034e-11 3.9836
240 1.1632e-08 2.9639 1.1637e-11 4.1705 2.4437e-11 3.9910

For m=2, we conclude from Tables 3-4 that

‖u−U‖∞ =O(h3), (5.2a)

max
1≤n≤N

1≤r≤m+1

|u(tnr)−U(tnr)|=O(h4), (5.2b)

max
1≤n≤N

|u(tn)−Un|=O(h4). (5.2c)

Even though the solution u ∈W1.5,∞, (1.5 < m), we still can obtain the optimal global
convergence and local superconvergence with graded meshes.

Example 5.3. Consider the system of MPDDEs:

u′1(t)=−
1
2

u2(t)−u1(t)+
1
5

u1

(1
2

t
)
+

1
6

u2

(1
3

t
)
+ f1(t),

u′2(t)=−
1
3

u1(t)−
1
4

u2(t)+
1
10

u2

(1
2

t
)
+

3
10

u1

(1
3

t
)
+ f2(t), 0< t≤1,

subject to the initial conditions u1(0)=0, u2(0)=1.

We set f1(t) and f2(t) to make the exact solutions u1(t)= t1.5, u2(t)=cos(t).
We approximate u1 and u2 by the piecewise quadratic DG method. Due to the weakly

singular solution u1, we select the graded meshes. In each subinterval In, (n= 1,··· ,N),
let

U1
n(t)=

m+1

∑
j=1

u1
n,jln,j(t)=

m+1

∑
j=1

u1
n,jLj

( t−tn−1

hn

)
and

U2
n(t)=

m+1

∑
j=1

u2
n,jln,j(t)=

m+1

∑
j=1

u2
n,jLj

( t−tn−1

hn

)
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Table 5: Errors for quadratic DG approximation of u1, r=3.

N erg R ern Rn err Rr
60 5.5457e-07 3.2617e-10 2.0694e-09

120 6.9780e-08 3.0270 1.9784e-11 4.0926 1.3081e-10 4.0323
180 9.0738e-08 3.0133 5.0610e-12 3.8856 2.5328e-11 4.0773
240 8.7538e-09 3.0126 1.7489e-13 3.8714 8.0487e-12 4.0044

Table 6: Errors for quadratic DG approximation of u2, r=3.

N erg R ern Rn err Rr
60 3.2020e-04 1.2715e-06 2.6127e-06

120 1.6670e-05 2.9175 2.1139e-08 4.0443 4.3867e-08 4.0346
180 5.0654e-07 2.9746 1.6053e-10 4.1551 3.9785e-10 4.0040
240 6.4891e-08 2.9916 1.1629e-11 3.8217 2.8813e-11 3.8220

be DG approximations of u1 and u2, respectively. We obtain the unknown vector

Un =(u1
n,1,··· ,u1

n,m+1,u2
n,1,··· ,u2

n,m+1)
T∈ IR2m+2.

From Tables 5-6 above, we obtain the optimal global convergence and local super-
convergence by using the piecewise quadratic DG method to solve the system of the
MPDDEs.

6 Concluding remarks

In this paper, the DG methods are employed to solve MPDDEs with smooth and weakly
singular solutions. We obtain the global convergence and local superconvergence both
on uniform meshes and graded meshes. Numerical experiments show the efficiency of
the DG method for solving MPDDEs.

We remark that the current technique can be extended to general nonuniform meshes
and the same global convergence and local nodal superconvergence of DG approxima-
tions can be obtained for smooth solutions of MPDDEs. But when the source term is
singular, special nonuniform meshes relating to the singularities are necessary, which we
used graded meshes this paper. Some other special nonuniform meshes relating to the
singularities, such as geometric meshes, are also can be used to get the same results. The
proof of the global convergence and local superconvergence are similar with those of the
graded meshes.

The following two problems remain to be addressed in future research work:

1. Superconvergence analysis of the postprocessing acceleration techniques for DG
solutions of MPDDEs;

2. Analysis of the continuous Galerkin method for MPDDEs;
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3. Analysis of the DG method for nonlinear system of MPDDEs.
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