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Abstract. We propose a robust approximate solver for the hydro-elastoplastic solid
material, a general constitutive law extensively applied in explosion and high speed
impact dynamics, and provide a natural transformation between the fluid and solid in
the case of phase transitions. The hydrostatic components of the solid is described by a
family of general Mie-Grüneisen equation of state (EOS), while the deviatoric compo-
nent includes the elastic phase, linearly hardened plastic phase and fluid phase. The
approximate solver provides the interface stress and normal velocity by an iterative
method. The well-posedness and convergence of our solver are proved with mild as-
sumptions on the equations of state. The proposed solver is applied in computing the
numerical flux at the phase interface for our compressible multi-medium flow simu-
lation on Eulerian girds. Several numerical examples, including Riemann problems,
shock-bubble interactions, implosions and high speed impact applications, are pre-
sented to validate the approximate solver.
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1 Introduction

Significant interest has arisen in the modeling and simulation of dynamic events that in-
volve high-load conditions and large deformations, such as shock-driven motions, high-
speed impacts, implosions, and so on. The numerical analysis of these problems de-
mands the implementation of very specific capabilities that enable the simulation of mul-
tiple mediums and their interactions through accurate descriptions of boundary condi-
tions and high-resolution shock and wave capturing.
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There are two typical frameworks to describe the motion of multi-medium flows [1],
that is, the Lagrangian framework and the Eulerian framework. In the Lagrangian frame-
work, the equations for mass, momentum and energy conservations are solved using a
computational mesh that conforms to the material boundaries and moves with parti-
cles [2, 3], which benefits from its simplicity and natural description of deformation, but
suffers from mesh distortion when dealing with large deformation problems. In Eulerian
framework the mesh is fixed in space, which makes these methods very suitable for flows
with large deformations, such as Udaykumar et al. [4–9], Liu et al. [10–15], Mehmandoust
et al. [16], Sijoy et al. [17], and so on. A typical procedure of multi-medium interaction in
Eulerian grids mainly consists of two steps. The first step is the interface capture, includ-
ing the diffuse interface method (DIM) [18–23], and the sharp interface method (SIM),
such as the volume of fluid (VOF) method [24, 25], level set method [26, 27], moment of
fluid (MOF) method [28–30] and front-tracking method [31, 32]. The second step is the
accurate prediction of the interface states, which can be used to stabilize the numerical
diffusion in diffuse interface methods, and to compute the numerical flux and interface
motion in sharp interface methods. One common approach is to solve a multi-medium
Riemann problem which contains the fundamentally physical and mathematical proper-
ties of the governing equations and plays a key role in designing the numerical flux.

The solution of a multi-medium Riemann problem depends not only on the initial
states at each side of the interface, but also on the forms of constitutive relations. There ex-
ist some difficulties in the cases of real materials due to the high nonlinearity of the equa-
tion of state and non-conservation of the deviatoric evolution. A variety of methods to
solve the corresponding Riemann problems have then been proposed. For example, Ya-
dav [33] analyzed spherical shocks in metals by employing a hydrostatic Mie-Grüneisen
equation of state that does not consider the effects of shear deformation. Shyue [34]
developed a Roe’s approximate Riemann solver for the Mie-Grüneisen EOS with vari-
able Grüneisen coefficient. Arienti et al. [35] applied a Roe-Glaster solver to compute
the equations combining the Euler equations involving chemical reaction with the Mie-
Grüneisen EOS. Lee et al. [36] developed an exact Riemann solver for the Mie-Grüneisen
EOS with constant Grüneisen coefficient, where the integral terms are evaluated using
an iterative Romberg algorithm. Banks [37] and Kamm [38] developed a Riemann solver
for the convex Mie-Grüneisen EOS by solving a nonlinear equation for the density in-
crement involved in the numerical integration of rarefaction curves. Unlike the fluid,
there may exist more than one nonlinear wave in a solid when it undergoes an elasto-
plastic deformation, which will increase the difficulty to obtain the exact solution of the
Riemann problem. Kaboudian et al. [39] analyzed the elastic Riemann problem in the
Lagrangian framework, and established the corresponding Riemann solver according to
the characteristic theory. Xiao et al. [40] raised an iterative procedure to solve the Rie-
mann problem approximately by linearizing the Riemann invariants. Tang et al. [41] put
forward a nearly exact Riemann solver for the perfectly elastoplastic solid based on the
physical observation, where the Murnagham EOS and perfectly plastic model were cho-
sen for the hydrostatic pressure and deviatoric stress respectively. Abouziarov et al. [42]
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and Bazhenov et al. [43] analyzed the structures of shock waves and rarefaction waves
in an elastoplastic material on the assumption of barotropy, without taking into account
the internal energy equation. Cheng et al. [13, 14] analyzed the wave structures of one-
dimensional elastoplastic flows and developed a two-rarefaction approximate Riemann
solver. Menshov et al. [44] provided an analysis of the Riemann problem in a complete
statement for the perfect plasticity on the assumption of one-dimensional motion and
uniaxial strain. Liu et al. [45,46], Feng et al. [47] and Gao et al. [48,49] analyzed the exact
solution of the elastic-perfectly plastic solid with the Murnagham EOS and stiffened gas
EOS, and combined it with the modified ghost fluid method to solve multi-medium prob-
lems. Gavirilyuk et al. [50] constructed a Riemann solver for the linearly elastic system of
the hyperbolic non-conservative models with transverse waves. In addition, the elastic
energy was included in the total energy, and an extra evolution equation, on the basis of
Despres et al. [51], was added in order to make the elastic transformation reversible in
the absence of shock wave.

In this paper, we propose an approximate multi-medium Riemann solver with a fam-
ily of general Mie-Grüneisen EOS and hydro-elastoplastic deviatoric deformation, which
can provide a smooth transformation between the fluid and solid in the case of phase
transitions. The Riemann problem together with its approximate solver in such case,
which has not been well studied in the literature yet, can be applied in the numerical
scheme developed in [52] conveniently. The study we carried out here is a further explo-
ration of our previous work in [53], which is restricted on the fluid-fluid Riemann solver
with Mie-Grüneisen EOS. Similar to the solver in [53], some mild conditions on the coeffi-
cients of Mie-Grüneisen EOS are assumed to ensure the convexity of the equation of state,
which guarantees the existence and uniqueness of the algebraic equation derived from
the Riemann problem. The algebraic equation is derived by a detailed analysis on the
structure of the Riemann fan. Then we solve the algebraic equation by an inexact Newton
method [54], where the function and its derivatives are evaluated approximately since the
analytical expressions are not available. The approximate evaluations of the function and
its derivatives are quite involved since they depend on the wave structure and the error
estimate in the run time. In spite of its complexity, we find that the convergence of the in-
exact Newton iteration can be achieved, which is significant to the success of large-scale
simulations in engineering applications. To validate the proposed approximate Riemann
solver, we employ it in the computation of multi-medium compressible flows with Mie-
Grüneisen EOS and elastoplastic deformation. The approximate solver developed here
enhances the capacity of the numerical scheme for our multi-medium compressible fluid
flows [52, 53], and allows us to simulate the problems with highly nonlinear fluids and
elastoplastic solids.

The rest of this paper is arranged as follows. In Section 2, a solution strategy for
the multi-medium Riemann problem with Mie-Grüneisen EOS and hydro-elastoplastic
deviatoric deformation is presented. In Section 3, the procedures of our approximate
Riemann solver are outlined, and the well-posedness and convergence are analyzed. In
Section 4, the application of our Riemann solver in multi-medium compressible flow
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calculations is briefly introduced. In Section 5, several classical Riemann problems and
applications for shock-bubble interaction, implosion and high speed impact problems
are carried out to validate the accuracy and robustness of our schemes. Finally, a short
conclusion is drawn in Section 6.

2 Multi-medium Riemann problem

The one-dimensional compressible multi-medium Riemann problem, in the absence of
heat conduction and radiation, can be written as

∂U
∂τ

+
∂F(U)

∂ξ
=0, U(ξ,τ=0)=

{
Ul , ξ<0,
Ur, ξ>0.

(2.1)

Here τ is time, ξ is spatial coordinate. U = [ρ,ρu,E]> is the vector of conservative vari-
ables, and F(U) = [ρu,ρu2−σ,(E−σ)u]> is the corresponding flux. ρ, u and E are the
density, velocity and total energy respectively, and σ is the normal Cauchy stress of the
hydro-elastoplastic solid.

To close the governing equations (2.1), we need an equation of state or constitutive
law to relate the thermodynamic variables. The hydro-elastoplastic model is a general
form of nonlinear fluid, elasticity, perfect elastoplasticity and linearly hardened elasto-
plasticity, as a mix and match combination of isotropic models.

In the hydro-elastoplastic model, the deformation is decomposed into the volumetric
deformation and shear deformation, and the Cauchy stress tensor σ is also divided into
the hydrostatic pressure and deviatoric stress tensor respectively,

σ=−pI+S,

where p is the hydrostatic pressure, S is the deviatoric stress tensor, and I is the unit
tensor.

The hydrostatic pressure p is expressed by the Mie-Grüneisen EOS, which may be
varied independently of the deviatoric response and has the following general form

p(ρ,e)=Γ(ρ)ρe+h(ρ), (2.2)

where e is the specific internal energy, Γ(ρ) is the Grüneisen coefficient, and h(ρ) is a
reference state associated with the cold contribution resulting from the interactions of
atoms at rest [55]. For the ease of our analysis, we impose on Γ(ρ) and h(ρ) the following
assumptions
(C1) Γ′(ρ)≤0, (ρΓ(ρ))′≥0, (ρΓ(ρ))′′≥0,
(C2) lim

ρ→+∞
Γ(ρ)=Γ∞ >0, Γ(ρ)≤Γ∞+2,

(C3) h′(ρ)≥0, h′′(ρ)≥0,
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similar to our previous work in [53]. A lot of equations of state of our interests fulfill
these assumptions. Particularly, we collect some equations of state in Appendix A which
are used in our numerical tests as examples.

The deviatoric stress S has a piecewisely complex constitutive relations, which is gov-
erned by means of Hooke’s law in the elastic region, the linearly hardened plastic flow
rule during the plastic region, and constant states when the plastic limit is violated. The
von Mises criterion is adopted to determine whether the material is under elastic region,
plastic region or fluid region, which can be written in terms of the deviatoric stress

H(S,Y)=S :S− 2
3

Y2,

where Y is the yield stress limit of the solid material. Y =YE corresponds to the elastic
yield stress, and Y=YP stands for the plastic yield stress, respectively.

The evolution of the deviatoric stress tensor can be written in the following piecewise
expressions

∂S
∂t

+u·∇S=


2µE

(
D− 1

3
tr(D)I

)
, |Seff|≤YE ,

2µP

(
D− 1

3
tr(D)I

)
, YE < |Seff|<YP ,

0, |Seff|=YP ,

where

D=
1
2

(
∂u
∂x

+

(
∂u
∂x

)>)

is the rate of the deformation tensor, Seff =
√

3
2 S :S is the effective stress, and µE and µP

are the elastic and plastic shear modulus, respectively.
Utilizing the continuity equation, we can obtain the following balance law

∂ρSij

∂t
+

∂ρukSij

∂xk
=


βE

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
βEδij

∂uk

∂xk
, |Seff|≤YE ,

βP

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
βPδij

∂uk

∂xk
, YE < |Seff|≤YP ,

0, |Seff|=YP ,

where βE =ρµE , βP =ρµP , δij is the Dirac function.

Remark 2.1. The hydro-elastoplastic model can degenerate to the elastic model, perfectly
elastoplastic model, linearly hardened elastoplastic model and fluid model naturally. Fox
example, it will degenerate to the elastic model when µE = µP and YE =YP =∞, to the
perfectly elastoplastic model when µP=0 and YP=∞, to the linearly hardened elastoplas-
ticity when µP<µE and YP=∞, and to the fluid model when µP=µE=0 and YE=YP=0,
respectively.
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The model presented above is a conventional Eulerian non-conservative model for
the elastoplastic behavior, which couples the nonlinear Euler equations of compressible
fluids with the augmented elastoplastic deformation. In high-rate and large deformation
region, the volumeric deformation is dominant and the deviatoric deformation can be
neglected. When the load is removed, the elastoplastic effect should be taken into account
again. For elastic deviatoric response the shear moduli may be taken to be functions of
temperature and pressure. Plasticity is based on an additive decomposition of the rate of
deformation tensor into elastic and plastic parts [56].

Here we discuss the multi-medium Riemann problem between hydro-elastoplastic
models, which can be treated in a similar way as the single-medium Riemann problem
as long as the materials remain immiscible. The Riemann solution consists of several
constant regions separated by the phase interface and genuinely nonlinear waves. The
key of the Riemann problem is to compute the states in the region adjacent to the phase
interface (the so called star region). To understand the influence of material deformation
on the interface states, the solution structure in each medium should be analyzed with
consideration of the elastoplastic deformation. Without loss of generality, we take the
medium at the right side of the interface as the example, and the left side can be analyzed
in a similar manner.

2.1 Solution in the elastic phase

The Riemann solution in the elastic phase consists of two constant states separated by an
elastic acoustic wave, whose speed is given by

λ=u+

√
c2+

4µE

3ρ
.

A typical wave structure for the elastic Riemann problem is shown in Fig. 1. The
acoustic wave is genuinely nonlinear, while the contact wave is linearly degenerate [50].
The jump of the normal deviatoric stress S across the acoustic wave satisfies

S∗k−Sk =
4βE

k
3

(
1
ρ∗k
− 1

ρk

)
, (2.3)

where the superscript ”*” stands for the star region state.

Rarefaction wave.
Denote by q = p−S the negative normal component of Cauchy stress tensor on the

interface. If q∗k≤qk, the acoustic wave is a rarefaction wave. It can be found that

u−
∫ 1

ρ

√
c2+

4βE

3ρ2 dρ, p−
∫

c2dρ,
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ξ

τ

right initial state Ur

U∗r
elastic phase

right-facing elastic wave

interface

Figure 1: Wave structure of the elastic solid phase in the ξ−τ space.

ξ

τ

right initial state Ur

U∗r U∆
r elastoplastic phase

right-facing elastic wave

right-facing plastic waveinterface

Figure 2: Wave structure of the elastoplastic solid phase in the ξ−τ space.

are Riemann invariants, which yield the relation

u∗k−uk =
∫ q∗k

qk

(
ρ2c2+

4
3

βE

k

)1/2

dq,

ρ∗k−ρk =
∫ p∗k

pk

dp
c2 .

Shock wave.
If q∗k > qk, then the acoustic wave is a shock wave. Applying the analysis of non-

conservative product [50] we have

u∗k−uk =

(
1
ρ∗k
− 1

ρk

)(
−

q∗k−qk

1/ρ∗k−1/ρk

)1/2

,

ek(p∗k ,ρ∗k )−ek(pk,ρk)+
1
2
(p∗k +pk)

(
1
ρ∗k
− 1

ρk

)
=0.

We define ϕE

k (p,ρ) to relate p and ρ on the elastic Hugoniot locus,

ϕE

k (p,ρ) :=Γk(ρk)ρk(p−hk(ρ))−Γk(ρ)ρ(pk−hk(ρk))−
1
2

Γk(ρk)(p+pk)Γk(ρ)(ρ−ρk),
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and ϕSE

k (S,ρ) to relate S and ρ on the elastic Hugoniot locus, according to (2.3),

ϕSE

k (S,ρ) :=
(

Γk(ρk)ρk−
1
2

Γk(ρk)Γk(ρ)(ρ−ρk)

)(
S−Sk−

4βE

k
3

(
1
ρ
− 1

ρk

))
=0.

Define

ΦE

k (q,ρ) :=ϕE

k (p,ρ)−ϕSE

k (S,ρ)
=Γk(ρk)ρk

(
q+SE

k −hk(ρ)
)
−Γk(ρ)ρ(pk−hk(ρk))

− 1
2

Γk(ρk)(q+SE

k +pk)Γk(ρ)(ρ−ρk), (2.4)

where SE

k =Sk+
4
3 (

1
ρ−

1
ρk
).

We have the following results on the function ΦE

k (q,ρ).

Lemma 2.1. The Hugoniot function ΦE

k (q,ρ) defined in (2.4) satisfies the following properties:
1). ΦE

k (q,ρk)>0;
2). ΦE

k (q,ρmax)<0;
3). ∂ΦE

k (q,ρ)/∂ρ<0;
4). ∂2ΦE

k (q,ρ)/∂ρ2<0 if h′′k (ρ)≥ (8+2Γk(ρ))βE

k /3ρ3.

Proof. (1). 1), 2) are obvious results from our previous work in [53].
(2). The first derivative of ΦE

k (q,ρ) in the elastic region with respect to the density is

∂ΦE

k
∂ρ

(q,ρ)=
∂ϕE

k
∂ρ

(p,ρ)−
∂ϕSk
∂ρ

(S,ρ)

=
∂ϕE

k
∂ρ

(p,ρ)−Γk(ρk)(2ρk−Γk(ρ)(ρ−ρk))
2βE

k
3ρ2 .

Since ∂ϕE
k

∂ρ (p,ρ)<0 and 2ρk−Γk(ρ)(ρ−ρk)>0, we can conclude that

∂ΦE

k
∂ρ

(q,ρ)<0.

(3). The second derivative of ΦE

k (q,ρ) with respect to the density is

∂2ΦE

k
∂ρ2 (q,ρ)=

∂2ϕE

k
∂ρ2 (p,ρ)−

∂2ϕSk
∂ρ2 (S,ρ)

=
∂2ϕE

k
∂ρ2 (p,ρ)+

2βE

k
3ρ3 Γk(ρk)(4ρk−ρΓk(ρ)+2ρkΓk(ρ))

<
∂2ϕE

k
∂ρ2 (p,ρ)+

(8+2Γk(ρ))Γk(ρk)βE

k ρk

3ρ3 .

It is an obvious result that ∂2ΦE
k

∂ρ2 (q,ρ)<0 when Γ′′k (ρ)=0 and h′′k (ρ)≥ (8+2Γk(ρ))βE

k /3ρ3.
This completes the whole proof.
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The slope of the Hugoniot locus in the elastic solid phase can be found by the method
of implicit differentiation, namely,

χE

k (q,ρ) :=
∂q
∂ρ

∣∣∣∣
ΦE

k

=−
2∂ΦE

k (q,ρ)/∂ρ

Γk(ρk)(2ρk−Γk(ρ)(ρ−ρk))
>0.

Remark 2.2. The wave structure in the linearly hardened region can be treated as a sim-
ilar case as the elastic region. And the wave structure in the fluid region will can be
viewed as βP

k =µP

k =0.

2.2 Solution in the elastic-plastic phase

When the solid undergoes an elastoplastic phase transition, the constitutive model is
distinguished by the elastic limit. Due to the discrepancy of the elastic and plastic wave,
there exists a jump in the slope of the rarefaction curve or Hugoniot locus, which leads
to the occurrence of split wave. Since the elastic wave propagates faster than the plastic
wave, the acoustic wave structure, shown in Fig. 2, will include a leading elastic wave
which connects the initial state Uk to the elastic limit state U∆

k , and a trailing plastic wave
which connects the elastic limit state to the star region state U∗k , where the superscript
”∆” denotes the state at the elastic limit.

Elastic limit state.
Before we discuss the elastoplastic flow, let us introduce the solid densities at the

elastic limit of compression ρ
C

and tension ρ
T

respectively, such that the effective stress√
S :S reaches the elastic yield stress limit

√
2/3YE .

According to the jump conditions of the deviatoric stress across the acoustic wave
(2.3), we can get the corresponding effective stress after the elastic acoustic wave,

S∆
k :S∆

k =
8
3
(

βE

k

)2

(
1

ρ∆
k
− 1

ρk

)2

+4βE

k

(
1

ρ∆
k
− 1

ρk

)
Sk+Sk :Sk,

where Sk is the deviatoric stress tensor in the normal direction of the phase interface.
Setting S∆

k :S∆
k =2(YE)2 /3 yields the definition of ρ

C
and ρ

T

ρ
C
=

(
1
ρk
− 3

4βE

k
Sk−

3
4βE

k

√
S2

k+
4
9
(YE)2− 2

3
Sk :Sk

)−1

, (2.5a)

ρ
T
=

(
1
ρk
− 3

4βE

k
Sk+

3
4βE

k

√
S2

k+
4
9
(YE)2− 2

3
Sk :Sk

)−1

. (2.5b)

Note that for most applications the elastic yield stress limit YE is much smaller than the
elastic shear modulus µE (about 2∼ 3 orders of magnitude smaller). Therefore, both ρ

C
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and ρ
T

must be positive. The other relevant quantities can also be calculated

p
C
=

2Γk(ρk)ρkhk(ρC
)+2Γk(ρC

)ρ
C
(pk−hk(ρk))+Γk(ρk)Γk(ρC

)pk(ρC
−ρk)

Γk(ρk)((2+Γk(ρC
))ρk−Γk(ρC

)ρ
C
)

,

p
T
=
∫ ρ

T

ρk

c2dρ, S
C
=Sk+

4βE

k
3

(
1
ρ
C

− 1
ρk

)
,

S
T
=Sk+

4βE

k
3

(
1

ρ
T

− 1
ρk

)
, q

T
= p

T
−S

T
, q

C
= p

C
−S

C
,

where p
C
, S

C
, q

C
and p

T
, S

T
, q

T
are the hydrostatic pressure, the normal component of de-

viatoric stress tensor and negative Cauchy stress tensor at the elastic limit of compression
and tension, respectively.
Elastoplastic rarefaction wave.

If q∗k≤q
T
≤qk, the acoustic elastic wave and plastic wave are both rarefaction waves,
u∗k−uk =

∫ q
T

qk

(
ρ2c2+

4βE

k
3

)−1/2

dq+
∫ q∗k

q
T

(
ρ2c2+

4βP

k
3

)−1/2

dq,

ρ∗k−ρk =
∫ q

T

qk

(
c2+

4βE

k
3ρ2

)−1

dq+
∫ q∗k

q
T

(
c2+

4βP

k
3ρ2

)−1

dq.

Elastoplastic shock wave.
If q∗k >q

C
>qk, then the acoustic elastic wave and plastic wave are both shock waves,

u∗k−uk =

(
−(q

C
−qk)

(
1
ρ
C

− 1
ρk

))1/2

+

(
−(q∗k−q

C
)

(
1
ρ
− 1

ρ
C

))1/2

,

ek(p∗k ,ρ∗k )−ek(pk,ρk)+
1
2
(p∗k +p

C
)

(
1
ρ∗k
− 1

ρ
C

)
+

1
2
(p

C
+pk)

(
1
ρ
C

− 1
ρk

)
=0.

Similar to the elastic solid phase, we define ΦEP

k (q,ρ) to relate q and ρ on the elasto-
plastic Hugoniot locus,

ΦEP

k (q,ρ) :=ΦE

k (qC
,ρ

C
)+ΦP

k (q,ρ), q>q
C
>qk, (2.6)

where

ΦE

k (qC
,ρ

C
) :=Γk(ρk)ρk (qC

+S
C
−hk(ρC

))−Γk(ρC
)ρ

C
(pk−hk(ρk))

− 1
2

Γk(ρk)(qC
+S

C
+pk)Γk(ρC

)(ρ
C
−ρk),

ΦP

k (q,ρ) :=Γk(ρC
)ρ

C

(
q+SP

k −hk(ρ)
)
−Γk(ρ)ρ(p

C
−hk(ρC

))

− 1
2

Γk(ρC
)(q+SP

k +p
C
)Γk(ρ)(ρ−ρ

C
),

SP

k =S
C
+

4
3

βP

k

(
1
ρ
− 1

ρ
C

)
.
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We have the following results on the function ΦEP

k (q,ρ) by a similar calculus to the
elastic case in Lemma 2.1.

Lemma 2.2. The Hugoniot function ΦEP

k (q,ρ) defined in (2.6) satisfies the following properties:
1). ΦEP

k (q,ρk)>0;
2). ΦEP

k (q,ρmax)<0;
3). ∂ΦEP

k (q,ρ)/∂ρ<0;
4). ∂2ΦEP

k (q,ρ)/∂ρ2<0 if h′′k (ρ)≥ (8+2Γk(ρ))βP

k /3ρ3.

Similar to the elastic solid phase, the slope of the Hugoniot locus in the elastoplastic
solid phase can be found by the method of implicit differentiation, namely,

χEP

k (q,ρ) :=
∂q
∂ρ

∣∣∣∣
ΦEP

k

=−
2∂ΦEP

k (q,ρ)/∂ρ

Γk(ρk)(2ρk−Γk(ρ)(ρ−ρk))
>0.

2.3 Solution in the plastic-fluid phase

Similar to the elastoplastic phase, the constitutive model is distinguished by the plastic
limit when the solid undergoes a plastic-fluid phase transition. The discrepancy of the
plastic and fluid wave leads to the split of plastic and fluid wave, shown in Fig. 3, which
includes a leading plastic wave which connects the initial state Uk to the plastic limit state
U∇k , and a trailing fluid wave which connects the plastic limit state to the star region state
U∗k , where the superscript ”∇” denotes the state at the plastic limit.
Plastic limit state.

The solid densities at the plastic limit of compression ρ
PC

and tension ρ
PT

can be
calculated when the effective stress

√
S :S reaches the plastic stress limit

√
2/3YP , similar

to Eq. (2.5)

ρ
PC

=

(
1
ρk
− 3

4βP

k
Sk−

3
4βP

k

√
(Sk)2+

4
9
(YP)2− 2

3
Sk :Sk

)−1

,

ρ
PT

=

(
1
ρk
− 3

4βP

k
Sk+

3
4βP

k

√
(Sk)2+

4
9
(YP)2− 2

3
Sk :Sk

)−1

.

Then the other relevant quantities can also be calculated

p
PC

=
2Γk(ρk)ρkhk(ρPC

)+2Γk(ρPC
)ρ

PC
(pk−hk(ρk))+Γk(ρk)Γk(ρPC

)pk(ρPC
−ρk)

Γk(ρC
)((2+Γk(ρPC

))ρk−Γk(ρPC
)ρ

PC
)

,

p
PT

=
∫ ρ

PT

ρk

c2dρ, S
PC

=Sk+
4βP

k
3

(
1

ρ
PC

− 1
ρk

)
,

S
PT

=Sk+
4βP

k
3

(
1

ρ
PT

− 1
ρk

)
, q

PC
= p

PC
−S

PC
, q

PT
= p

PT
−S

PT
.
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Plastic-fluid rarefaction wave.
If q∗k ≤ q

PT
≤ qk ≤ q

T
, the acoustic plastic wave and fluid wave are both rarefaction

waves, 
u∗k−uk =

∫ q
PT

qk

(
ρ2c2+

4βP

k
3

)−1/2

dq+
∫ q∗k

q
PT

1
ρc

dq,

ρ∗k−ρk =
∫ q

PT

qk

(
c2+

4βP

k
3ρ2

)−1

dq+
∫ q∗k

q
PT

1
c2 dq.

Plastic-fluid shock wave.
If q∗k > q

PC
> qk > q

C
, then the acoustic plastic wave and fluid wave are both shock

waves,
u∗k−uk =

(
−(q

PC
−qk)

(
1

ρ
PC

− 1
ρk

))1/2

+

(
−(q∗k−q

PC
)

(
1
ρ
− 1

ρ
PC

))1/2

,

ek(p∗k ,ρ∗k )−ek(pk,ρk)+
1
2
(p∗k +p

PC
)

(
1
ρ∗k
− 1

ρ
PC

)
+

1
2
(p

PC
+pk)

(
1

ρ
PC

− 1
ρk

)
=0.

Similar to the elastoplastic solid phase, we define ΦPF

k (q,ρ) to relate q and ρ on the plastic-
fluid Hugoniot locus,

ΦPF

k (q,ρ) :=ΦP

k (qPC
,ρ

PC
)+ΦF

k (q,ρ), q>q
PC

>qk >q
C
, (2.7)

where

ΦP

k (qPC
,ρ

PC
) :=Γk(ρk)ρk (qPC

+S
PC
−hk(ρPC

))−Γk(ρPC
)ρ

PC
(pk−hk(ρk))

− 1
2

Γk(ρk)(qPC
+S

PC
+pk)Γk(ρPC

)(ρ
PC
−ρk),

ΦF

k (q,ρ)=Γk(ρPC
)ρ

PC
(q+S

F
−hk(ρ))−Γk(ρ)ρ(p

PC
−hk(ρPC

))

− 1
2

Γk(ρPC
)(q+S

F
+p

PC
)Γk(ρ)(ρ−ρ

PC
),

S
F
=S

PC
.

Similarly, we have the following results on the function ΦPF

k (q,ρ) by a simple calculus.

Lemma 2.3. The Hugoniot function ΦPF

k (q,ρ) defined in (2.7) satisfies the following properties:
1). ΦPF

k (q,ρk)>0;
2). ΦPF

k (q,ρmax)<0;
3). ∂ΦPF

k (q,ρ)/∂ρ<0;
4). ∂2ΦPF

k (q,ρ)/∂ρ2<0 if Γ′′k (ρ)=0.
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ξ

τ

right initial state Ur

U∗r U∇r plastic-fluid phase

right-facing plastic wave

right-facing fluid waveinterface

Figure 3: Wave structure of the plastic-fluid phase in the ξ−τ space.

ξ

τ

right initial state Ur

U∗r U∇r U∆
r elas-plas-fluid phase

right-facing elastic wave

right-facing plastic wave

right-facing fluid waveinterface

Figure 4: Wave structure of the elastic-plastic-fluid solid phase in the ξ−τ space.

2.4 Solution in the elastic-plastic-fluid phase

If the solid undergoes an elastic-plastic-fluid phase transition, shown in Fig. 4, there ex-
ist acoustic elastic, plastic and fluid rarefaction waves or shock waves on the isentropic
curves or Hugoniot loci, which are distinguished by the elastic limit and plastic limit,
respectively.
Elastic-plastic-fluid rarefaction wave.

If q∗k ≤ q
PT

< q
T
≤ qk, the acoustic elastic, plastic and fluid wave are all rarefaction

waves,

u∗k−uk =
∫ q

T

qk

(
ρ2c2+

4βE

k
3

)−1/2

dq+
∫ q

PT

q
T

(
ρ2c2+

4βP

k
3

)−1/2

dq+
∫ q∗k

q
PT

1
ρc

dq,

ρ∗k−ρk =
∫ q

T

qk

(
c2+

4βE

k
3ρ2

)−1

dq+
∫ q

PT

q
T

(
c2+

4βP

k
3ρ2

)−1

dq+
∫ q∗k

q
PT

1
c2 dq.

Elastic-plastic-fluid shock wave.
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If q∗k>q
PC
>q

C
>qk, then the acoustic elastic, plastic and fluid wave are all shock waves,

u∗k−uk =

(
−(q

C
−qk)

(
1
ρ
C

− 1
ρk

))1/2

+

(
−(q

PC
−q

C
)

(
1

ρ
PC

− 1
ρ
C

))1/2

+

(
−(q∗k−q

PC
)

(
1
ρ∗k
− 1

ρ
PC

))1/2

, (2.8a)

ek(p∗k ,ρ∗k )−ek(pk,ρk)+
1
2
(p∗k +p

PC
)

(
1
ρ∗k
− 1

ρ
PC

)
+

1
2
(p

PC
+p

C
)

(
1

ρ
PC

− 1
ρ
C

)
+

1
2
(p

C
+pk)

(
1
ρ
C

− 1
ρk

)
=0. (2.8b)

Similar to the elastoplastic solid phase, we define ΦEPF

k (q,ρ) to relate q and ρ on the
elastic-plastic-fluid Hugoniot locus

ΦEPF

k (q,ρ) :=ΦE

k (qC
,ρ

C
)+ΦPC

k (q
PC

,ρ
PC
)+ΦF

k (q,ρ), q>q
C
>q

PC
>qk, (2.9)

where

ΦPC

k (q
PC

,ρ
PC
) :=Γk(ρC

)ρ
C
(q

PC
+S

PC
−hk(ρPC

))−Γk(ρPC
)ρ

PC
(p

C
−hk(ρC

))

− 1
2

Γk(ρC
)(q

PC
+S

PC
+p

C
)Γk(ρPC

)(ρ
PC
−ρ

C
).

Similarly, we have the following results on the function ΦEPF

k (q,ρ) by a simple calcu-
lus

Lemma 2.4. The Hugoniot function ΦEPF

k (q,ρ) defined in (2.9) satisfies the following properties:
1). ΦEPF

k (q,ρk)>0,
2). ΦEPF

k (q,ρmax)<0,
3). ∂ΦEPF

k (q,ρ)/∂ρ<0,
4). ∂2ΦEPF

k (q,ρ)/∂ρ2<0 if Γ′′k (ρ)=0.

2.5 Solution of the Riemann problem

For the hydro-elastoplastic solid Riemann problem, the following compatibility condi-
tions are imposed across the interface

u∗l =u∗r ,
p∗l −S∗l = p∗r−S∗r .

Let q∗= p∗l −S∗l = p∗r−S∗r . Equating the interface normal velocity u∗=u∗l =u∗r yields

u∗=ul− fl(q∗)=ur+ fr(q∗),
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Table 1: Expressions of stress functions and their derivatives for rarefaction waves.

q fk(q) f ′k(q) f ′′k (q) Wave type

Solid

q
PT

<q
T
<q≤qk

∫ q
qk
(ρ2c2+ 4

3 βE
k )
−1/2dq (ρ2c2+ 4

3 βE
k )
−1/2 −ρG(ρ2c2+ 4

3 βE
k )
−3/2 (|Rk )E

q
PT

<q≤qk <q
T

∫ q
qk
(ρ2c2+ 4

3 βP
k )
−1/2dq (ρ2c2+ 4

3 βP
k )
−1/2 −ρG(ρ2c2+ 4

3 βP
k )
−3/2 (|Rk )P

q≤qk <q
PT

<q
T

∫ q
qk

1
ρc dq 1

ρc − G
ρ2c3 (|Rk )F

q
PT

<q≤q
T
≤qk

∫ q
T

qk
(ρ2c2+ 4

3 βE
k )
−1/2dq+∫ q

q
T

(ρ2c2+ 4
3 βP

k )
−1/2dq (ρ2c2+ 4

3 βP
k )
−1/2 −ρG(ρ2c2+ 4

3 βP
k )
−3/2 (|Rk )EP

q≤q
PT

<qk≤q
T

∫ q
PT

qk
(ρ2c2+ 4

3 βP
k )
−1/2dq+∫ q

q
PT

1
ρc dq

1
ρc − G

ρ2c3 (|Rk )PF

q≤q
PT

<q
T
≤qk

∫ q
T

qk
(ρ2c2+ 4

3 βE
k )
−1/2dq+∫ q

PT
qT

(ρ2c2+ 4
3 βP

k )
−1/2dq+∫ q

q
PT

1
ρc dq

1
ρc − G

ρ2c3 (|Rk )EPF

Table 2: Expressions of stress functions and their derivatives for shock waves.

q fk(q) f ′k(q) f ′′k (q) Wave type

Solid

qk <q<q
C
<q

PC
((q−qk)(

1
ρk
− 1

ρ ))
1/2 1

2 fk(q)
( 1

ρk
− 1

ρ +
q−qk
ρ2χ

E

)
− 1

4 f 3
k (q)

( 2(q−qk)
2

ρ2χ2
E

( 1
ρk
− 1

ρ )+

( 2
ρ +

∂χ
E

∂q
|ΦE

k
)( 1

ρk
− 1

ρ−
q−qk
ρ2χ

E

)2)
(|Sk )

E

q
C
≤qk <q<q

PC
((q−qk)(

1
ρk
− 1

ρ ))
1/2 1

2 fk(q)
( 1

ρk
− 1

ρ +
q−qk
ρ2χ

P

)
− 1

4 f 3
k (q)

( 2(q−qk)
2

ρ2χ2
P

( 1
ρk
− 1

ρ )+

( 2
ρ +

∂χ
P

∂q
|ΦP

k
)( 1

ρk
− 1

ρ−
q−qk
ρ2χ

P

)2)
(|Sk )

P

q
PC
≤qk <q<q

PC
((q−qk)(

1
ρk
− 1

ρ ))
1/2 1

2 fk(q)
( 1

ρk
− 1

ρ +
q−qk
ρ2χ

F

)
− 1

4 f 3
k (q)

( 2(q−qk)
2

ρ2χ2
F

( 1
ρk
− 1

ρ )+

( 2
ρ +

∂χ
F

∂q
|ΦF

k
)( 1

ρk
− 1

ρ−
q−qk
ρ2χ

F

)2)
(|Sk )

F

qk <q
C
≤q<q

PC

((q
C
−qk)(

1
ρk
− 1

ρc
))1/2

+((q−q
C
)( 1

ρ
C
− 1

ρ ))
1/2

1
2 fk(q)

( 1
ρ
C
− 1

ρ +
q−q

C

ρ2χ
EP

)
− 1

4 f 3
k (q)

(
2(q−q

C
)2

ρ2χ2
EP

( 1
ρ
C
− 1

ρ )+

( 2
ρ +

∂χ
EP

∂q
|ΦEP

k
)( 1

ρ
C
− 1

ρ−
q−q

C

ρ2χ
EP

)2)
(|Sk )

EP

q
C
<qk <q

PC
<q

((q
PC
−qk)(

1
ρk
− 1

ρ
PC

))1/2

+((q−q
PC

)( 1
ρ
PC
− 1

ρ ))
1/2

1
2 fk(q)

( 1
ρ
PC
− 1

ρ +
q−q

PC

ρ2χ
PF

)
− 1

4 f 3
k (q)

(
2(q−q

PC
)2

ρ2χ2
PF

( 1
ρ
PC
− 1

ρ )+

( 2
ρ +

∂χ
PF

∂q
|ΦPF

k
)( 1

ρ
PC
− 1

ρ−
q−q

PC

ρ2χ
PF

)2)
(|Sk )

PF

qk <q
PC

<q
C
<q

((q
C
−qk)(

1
ρk
− 1

ρ
C

))1/2

+((q
PC
−q

C
)( 1

ρ
C
− 1

ρ
PC

))1/2

+((q−q
PC

)( 1
ρ
PC
− 1

ρ ))
1/2

1
2 fk(q)

( 1
ρ
PC
− 1

ρ +
q−q

PC

ρ2χ
EPF

)
− 1

4 f 3
k (q)

(
2(q−q

PC
)2

ρ2χ2
EPF

( 1
ρ
PC
− 1

ρ )+

( 2
ρ +

∂χ
EPF

∂q
|ΦEPF

k
)( 1

ρ
PC
− 1

ρ−
q−q

PC

ρ2χ
EHF

)2)
(|Sk )

EPF

where the expressions of fk(q), f ′k(q), f ′′k (q), (k= l,r) for each phase are collected in Table
1 and Table 2. Here ”|” denotes the interface, the superscript “S” and “R” stand for the
shock wave and rarefaction wave, respectively. Φm

k (q,ρ) denotes the algebraic equation
of the Hugoniot locus for the shock wave, and χm

k (q,ρ) denotes its slope, where m =
F,E,P,EP,PF,EPF. “F”, “E”, “P”, “EP”, “PF” and “EPF” denote the types of acoustic
wave in hydro-elastoplastic solid, which is elastic wave, plastic wave, fluid wave, elastic-
plastic wave, plastic-fluid wave and elastic-plastic-fluid wave, respectively.

Therefore, the interface normal stress q∗ is exactly the zero of the following stress
function

f (q) := fl(q)+ fr(q)+ur−ul . (2.10)

And the interface velocity u∗ can be determined from

u∗=
1
2
(ul+ur+ fr(q∗)− fl(q∗)).
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The behavior of fk(q) is related to the existence and uniqueness of the solution of the
Riemann problem. We claim on fk(q) that

Lemma 2.5. Assume that the conditions (C1)-(C3) hold for Γk(ρ) and hk(ρ), the function fk(q)
is monotonically increasing and concave, i.e.,

f ′k(q)>0 and f ′′k (q)<0,

if the Hugoniot function is concave with respect to the density, i.e., ∂2Φm
k (q,ρ)/∂ρ2<0.

Proof. The first and second derivatives of fk(q) can be found in Table 1. The result then
follows by a direct observation.

Here we provide a short proof of the results for the Riemann problem with Mie-
Grüneisen EOS and hydro-elastoplastic constitutive law in the following theorem.

Theorem 2.1. The Riemann problem (2.10) has a unique solution (in the class of admissible
shocks, interfaces and rarefaction waves separating constant states) if and only if the initial states
satisfy the constraint

ur−ul <
∫ ql

ql,min

1
ρc

dq+
∫ qr

qr,min

1
ρc

dq, (2.11)

where ql,min, qr,min are the cut-off stresses in tension for each hydro-elastoplastic solid.

Proof. We first notice that for the left- and right-facing waves, the derivative f ′k(q) in Table
1 and Table 2 is always positive, and as a result, the stress function f (q) is monotonically
increasing.

Next we study the behavior of f (q) when q tends to infinity. Let ρ̃ represent the
density such that Φm

k (q̃,ρ̃)= 0 for a given q̃, which is the equation relates ρ and q along
the Hugoniot locus. When the stress q> q̃, we have ρ> ρ̃, according to the monotonicity
of the Hugoniot locus, and thus

f 2
k (q)=(q−qk)

(
1
ρk
− 1

ρ

)
> (q−qk)

(
1
ρk
− 1

ρ̃

)
.

As a result, fk(q) tends to positive infinity as q→+∞ and so does f (q).
Based on the behavior of the function f (q), a necessary and sufficient condition for

the interface stress q∗>qmin such that f (q∗)=0 to be uniquely defined is given by

f (qmin)= fl(qmin)+ fr(qmin)+ur−ul <0,

or equivalently, the constraint given by (2.11), where qmin =max(ql,min,qr,min). This com-
pletes the proof of the theorem.

Remark 2.3. When the initial states violate the constraint (2.11), the Riemann problem has
no solution in the above sense. One can yet define a solution by introducing a vacuum.
However, we are not going to address this issue which is beyond the scope of our current
study.
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3 Approximate Riemann solver

Our algorithm of the Riemann solver is to find the unique zero of the stress function f (q)
using the Newton-Raphson method [57]

qn+1=qn−
f (qn)

f ′(qn)
=qn−

fl(qn)+ fr(qn)+ur−ul

f ′l (qn)+ f ′r(qn)
.

Unfortunately, there is generally no close-form expression for the stress function f (q)
or its derivative f ′(q) for some complex equations of state. Instead we perform the inexact
Newton method, which is formulated as

qn+1=qn−
Fn

F′n
=qn−

Fn,l+Fn,r+ur−ul

F′n,l+F′n,r
,

un =
1
2
(ul+ur+Fn,r−Fn,l),

(3.1)

where Fn,k and F′n,k approximate fk(qn) and f ′k(qn), respectively.
To specify the sequences Fn,k and F′n,k, we compute the shock branch using an iterative

method, and the rarefaction branch through numerical integration. It is natural to expect
that the sequences qn and un will tend to q∗ and u∗ respectively, whenever the evaluation
errors |Fn,k− fk(qn)| and |F′n,k− f ′k(qn)| are going to zero, which have been proved in our
previous work [53]. The convergence is guaranteed by a posteriori control on the evalua-
tion errors of fk(qn) and f ′k(qn), which depend on the residual of the algebraic equation in
the shock branch as well as the truncation error of the ordinary differential equation in the
rarefaction branch. Here we apply the Newton-Raphson method to solve the Hugoniot
loci, and the adaptive Runge-Kutta-Fehlberg method [58] to solve the isentropic curves.

Precisely, if qn > qk, for the given n-th iterator qn, we solve the following algebraic
equation

Φm
k (qn,ρ̃n,k)=0, (3.2)

to obtain ρ̃n,k to a prescribed tolerance by the Newton-Raphson method

ρn,k,j+1=ρn,k,j−
Φm

k (qn,ρn,k,j)

∂Φm
k (qn,ρn,k,j)/∂ρ

.

By Lemmas 2.1, 2.2, 2.3 and 2.4, we can naturally get the conclusion that the Newton-
Raphson iteration for (3.2) must converge for any initial guess ρ>ρk. Then the values of
Fn,k and F′n,k for the shock branch are thus taken as

Fn,k =

(
(qn−qk)

(
1
ρk
− 1

ρ̃n,k

))1/2

, (3.3a)

F′n,k =
1

2Fn,k

(
1
ρk
− 1

ρ̃n,k
+

qn−qk

ρ2
n,k χm

k (qn,ρ̃n,k)

)
. (3.3b)
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If, on the other hand, qn ≤ qk, then we solve the following system of the initial value
problem 

d fk(q)
dq

=

(
ρ2c2+

4βm
k

3

)−1/2

, fk|q=qk =0,

dρ

dq
=

(
c2+

4βm
k

3ρ2

)−1

, ρ|q=qk =ρk,

(3.4)

backwards until q=qn using the adaptive Runge-Kutta-Fehlberg method.
When the initial states Ul , Ur and the global tolerance ε0 are given, the whole proce-

dure of the approximate Riemann solver for (2.10) is as below.

Step 1 Provide an initial estimate of the interface normal stress

q0=
ρlclqr+ρrcrql+ρlclρrcr(ul−ur)

ρlcl+ρrcr
.

Step 2 Assume that the n-th iteration qn is obtained. Determine the type of the left and
right nonlinear waves.

(i) If qn >max{ql ,qr}, then both nonlinear waves are shock waves.

(ii) If min{ql ,qr}≤qn≤max{ql ,qr}, then one of the two nonlinear waves is a shock
wave, and the other is a rarefaction wave.

(iii) If qn <min{ql ,qr}, then both nonlinear waves are rarefaction waves.

Step 3 Evaluate Fn,k and F′n,k according to the type of nonlinear waves and the local eval-
uation error εn,k.

(i) When the nonlinear wave is a rarefaction wave, estimate the local evaluation
error εn,k according to the condition numbers of system (3.4), and calculate Fn,k
and F′n,k by using the adaptive Runge-Kutta-Fehlberg method.

(ii) When the nonlinear wave is a shock wave, estimate the local residual of the al-
gebraic equation (3.2) according to its condition number, and get the correspond-
ing ρ̃n,k by using the Newton-Raphson method. Then calculate Fn,k and F′n,k by
(3.3a) and (3.3b).

Step 4 Update the interface normal stress through

qn+1=qn−
Fn,l+Fn,r+ur−ul

F′n,l+F′n,r
.

Step 5 Terminate whenever the relative change of the stress reaches the prescribed tol-
erance ε0. The sufficiently accurate estimate qn is then taken as the approximate
interface normal stress q∗. Otherwise return to Step 2.

Step 6 Compute the interface velocity u∗ through

u∗=
1
2
(ul+ur+Fn,r−Fn,l).
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4 Application on multi-medium interaction

Now we consider the compressible multi-medium interaction problems described by an
immiscible model in the domain Ω. Two mediums are separated by a sharp interface Γ(t)
characterized by the zero of the level set function φ(x,t). The region occupied by each
medium can be expressed in terms of φ(x,t)

Ω+(t) :={x∈Ω | φ(x,t)>0} and Ω−(t) :={x∈Ω | φ(x,t)<0}.

And the medium in each region is governed by the following governing equations

∂U
∂t

+∇·F(U)=0, x∈Ω±(t), (4.1)

where U=[ρ,ρu,E]>, F(U)=[ρu>,ρu⊗u−σ,Eu>−σ·u>]>. Here u stands for the velocity
vector, and other variables represent the same as that in (2.1). The equation of state and
constitutive law have been given in Section 2.

We extend the numerical scheme in Guo et al. [52] to the hydro-elastoplastic prob-
lems, which is implemented on Eulerian grids. For completeness, we briefly sketch the
main steps of the numerical scheme for the multi-medium flow therein. The approximate
Riemann solver we proposed is applied to calculate the numerical flux at the phase inter-
face in the overall numerical scheme. The whole domain Ω is divided into a conforming
mesh with simplex cells, and the overall scheme is mainly divided into three steps:
(1). Evolution of the interface

The level set function is approximated by a continuous piecewisely linear function,
which satisfies

∂φ

∂t
+ũ|∇φ|=0. (4.2)

Here ũ denotes the normal velocity of the phase interface, where the normal direction is
chosen as the gradient of the level set function.

The discretized level set function (4.2) is updated through the characteristic line track-
ing method once the motion of the phase interface is given. Due to the nature of the
level set equation, it remains to specify the normal velocity ũ within a narrow band near
the phase interface. This can be achieved by firstly solving a multi-medium Riemann
problem across the phase interface and then extending the velocity field to the nearby
region using the harmonic extension technique of Di et al. [59]. The solution of the multi-
medium Riemann problem has been elaborated in Section 2.

In order to keep the property of the signed distance function, we solve the following
reinitialization equation 

∂ψ

∂τ
=sgn(ψ0)·(1−|∇ψ|),

ψ(x,0)=ψ0=φ(x,t),
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φ<0 φ>0

K−i,n

K+
i,n

L−ij,n
L+

ij,n
nKi,n

Γh,n

Figure 5: Illustration of the fluid-solid interaction model.

until steady state using the explicitly positive coefficient scheme [59].
Once the level set function is updated until the n-th time level, we can obtain the dis-

cretized phase interface Γh,n. A cell Ki,n is called an interface cell if the intersection of Ki,n
and Γh,n, denoted as ΓKi,n , is nonempty. Since the level set function is piecewisely linear
and the cell is simplex, ΓKi,n must be a linear manifold in Ki,n. The interface Γh,n further
cuts the cell Ki,n and one of its boundaries Lij,n into two parts, which are represented
as K±i,n and L±ij,n respectively (may be an empty set). The unit normal of ΓKi,n , pointing
from K−i,n to K+

i,n, is denoted as n
Ki,n

. These quantities can be readily computed from the
geometries of the phase interface and cells. See Fig. 5 for an illustration.

(2). Numerical flux
The numerical flux for the multi-medium flow is composed of two parts: the cell

edge flux and the phase interface flux. Below we explain the flux contribution towards
any given cell Ki,n. We introduce two sets of flow variables at the n-th time level

U±
Ki,n

=

 ρ±
Ki,n

ρ±
Ki,n

u±
Ki,n

E±
Ki,n

,

which refer to the constant states in the cell K±i,n. Note that the flow variables vanish if
there is no corresponding medium in a given cell.

• Cell edge flux
The cell edge flux is the exchange of the flux between the same medium across the cell

boundary. For any edge Lij between the cell Ki,n and one of its adjacent cells Kj,n, let nij,n
be the unit normal pointing from Ki,n to Kj,n. The cell edge flux across L±ij,n is calculated
as

F̂±ij,n =∆tn

∣∣∣L±ij,n∣∣∣ F̂(U±
Ki,n

,U±
Kj,n

;nij,n

)
, (4.3)

where ∆tn denotes the current time step length, and F̂(Ul ,Ur;n) is a consistent monotonic
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numerical flux along n. Here we adopt the local Lax-Friedrich flux

F̂(Ul ,Ur;n)=
1
2
(F(Ul)+F(Ur))·n−

1
2

λ(Ur−Ul),

where λ is the maximal signal speed over Ul and Ur.
•Phase interface flux

The phase interface flux is the exchange of the flux between two mediums due to the
interaction of mediums at the phase interface. If Ki,n is an interface cell, then the flux
across the interface Γ

Ki,n
can be approximated by

F̂±
Ki,n

=∆tn

∣∣∣ΓKi,n

∣∣∣
 0

q∗
Ki,n

n
Ki,n

q∗
Ki,n

u∗
Ki,n

. (4.4)

Here q∗
Ki,n

and u∗
Ki,n

are the interface stress and normal velocity, which are obtained by
applying the approximate solver we proposed in Section 3 to a local one-dimensional
Riemann problem in the normal direction of the phase interface with initial states

[ρl ,ul ,pl ,Sl ]
>=

[
ρ−
Ki,n

, u−
Ki,n
·n

Ki,n
, p−

Ki,n
, n>

Ki,n
·S−

Ki,n
·n

Ki,n

]>
,

[ρr,ur,pr,Sr]
>=

[
ρ+
Ki,n

, u+
Ki,n
·n

Ki,n
, p+

Ki,n
, n>

Ki,n
·S+

Ki,n
·n

Ki,n

]>
.

Here p±
Ki,n

and S±
Ki,n

in the initial states are given through the corresponding equations of
state and deviatoric constitutive laws, respectively.
(3). Update of conservative variables

Once the edge flux (4.3) and phase interface flux (4.4) are computed, the conservative
variables at the (n+1)-th time level are thus assigned as

U±
Ki,n+1

=


0, K±i,n+1=∅,

1∣∣∣K±i,n+1

∣∣∣
|K±i,n|U±Ki,n

+ ∑
L±ij,n⊆∂K±i,n

F̂±ij,n+ F̂±
Ki,n

, K±i,n+1 6=∅.

Basically, the steps we present above include the overall numerical scheme, while there
are more details in the practical implementation to guarantee the stability of the scheme.
Please see [52] for those details.

5 Numerical examples

In this section we present some numerical examples to validate our methods, includ-
ing one-dimensional Riemann problems and two-dimensional shock impact problems.
One-dimensional simulations are carried out on uniform interval meshes, while two-
dimensional simulations are carried out on unstructured triangular meshes.
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5.1 One-dimensional Riemann problems

In this part, we present some numerical examples of one-dimensional Riemann problems.
The computational domain is [0,1] with 400 cells, and both the left and right boundaries
are set as outflow conditions. The reference solutions, if mentioned, are given from either
published results or computed on a very fine mesh with 104 cells.

5.1.1 Gas-gas Riemann problem

In the first example, we study a single-phase problem from [60], where a standard Eule-
rian scheme also works well with no oscillation. We take it as a two-phase problem by
artifically embedding an interface at x=0.5 initially. The initial values are

[ρ,u,p]>=

{
[1.0, 0, 103]>, x<0.5,
[1.0, 0, 10−2]>, x>0.5.

We carry out the simulation to a final time of 0.012. Fig. 6 shows the comparison
between numerical results and exact solutions. From the comparison we can see that the
numerical results behave in perfect agreement with the exact solutions.

5.1.2 JWL-polynomial Riemann problem

This example concerns the JWL-polynomial Riemann problem. The initial states are

[ρ,u,p]>=

{
[1630, 0, 8.3×109]>, x<0.5,
[1000, 0, 1.0×105]>, x>0.5.

We use the following values to describe the TNT [61]: A1 = 3.712×1011Pa, A2 = 3.230×
109Pa, ω=0.30, R1=4.15, R2=0.95 and ρ0=1630kg/m3. The parameters of the polynomial
EOS are ρ0=1000kg/m3, A1=2.20×109Pa, A2=9.54×109Pa, A3=1.45×1010Pa, B0=B1=
0.28, T1=2.20×109Pa and T2=0 [62].

The result at t = 8.0×10−5 is shown in Fig. 7, where we can observe that both the
interface and shock are captured well without spurious oscillation.
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Figure 6: Gas-gas Riemann problem.
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Figure 7: JWL-polynomial Riemann problem.

5.1.3 Gavrilyuk’s elastic solid Riemann problem

In this problem, we simulate an elastic solid Riemann problem [50]. The hydrostatic
pressure of the solid is described by the stiffened gas EOS with parameters γ=4.4, p∞ =
6×106 Pa. And the deviatoric component obeys the Hooke’s law, whose elastic shear
modulus is µE =1010 Pa. The initial values are given by

[ρ,u,p]>=

{
[103, 100, 105]>, x<0.5,
[103, −100, 105]>, x>0.5.

The comparison between our numerical results and reference solutions at 6.1×10−5 is
shown in Fig. 8, from which we can see that our results agree well with the reference
solutions, and there is no oscillation in the vicinity of phase interface and shock waves.

5.1.4 JWL-elastic solid Riemann problem

In this problem, we simulate a JWL-elastic solid Riemann problem. The JWL EOS has
the following parameters: A1 = 8.545×1011Pa, A2 = 2.050×1010Pa, ω = 0.25, R1 = 4.6,
R2=1.35, ρ0=1840kg/m3. The elastic solid has the same constitutive law as Section 5.1.3
with βE =1014 Pa·kg/m3. The initial values are

[ρ,u,p]>=

{
[1630, 0, 9.2×109]>, x<0.5,
[7800, 0, 105]>, x>0.5.

The computation terminates at 10−4. Fig. 9 displays the results of our numerical
scheme and the exact solutions, where we can see that there is no non-physical pressure
and velocity across the contact discontinuity in our numerical scheme.

5.1.5 Perfectly elastoplastic solid Riemann problem

In this problem, we extend our methods to simulate the perfectly elastoplastic solid-solid
Riemann problem [45]. We take the Murnagham EOS (A.3) to describe the hydrostatic
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Figure 8: Gavrilyuk’s elastic solid Riemann problem (top row: our results, bottom row: results from Gavrilyuk
et al. [50]).
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Figure 9: JWL-elastic solid Riemann problem.

pressure of the solid, and set the following parameters for the solid: µE = 8.53×105Pa,
µP =0, K=2.225×106Pa, YE =6.50×103Pa, YP =0. The initial values are given by

[ρ,u,p]>=

{
[7.8, 10, 1.0]>, x<0.5,
[7.8, −5, 1.0]>, x>0.5.

The comparison between our numerical results and reference solutions at 6.751×10−4

is shown in Fig. 10. Each solid has two nonlinear waves, the leading elastic shock wave
and tailing plastic shock wave, and there is no oscillation in the vicinity of phase interface
and shock waves. Both the elastic and plastic shock waves are captured correctly.
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Figure 10: Perfectly elastoplastic solid Riemann problem (top panel: our numerical results, bottom panel:
reference solutions from T. G. Liu [45]).
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Figure 11: Hydro-elastoplastic solid Riemann problem.

5.1.6 Hydro-elastoplastic solid Riemann problem

In this problem, we extend our methods to simulate the hydro-elastoplastic solid Rie-
mann problem [45], which has the same initial conditions and parameters as Section 5.1.5
except YP =9.75×103Pa, µP =µE/2.

Our numerical results at 6.751×10−4 is shown in Fig. 11. Due to the discrepency of
the deviatoric constitutive law, each solid has three nonlinear waves, a leading elastic
shock wave, an intermediate plastic shock wave and a tailing fluid shock wave. From the
comparison, we can see that there is no oscillation in the vicinity of phase interface and
shock waves.
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5.2 Two-dimensional applications

In this part, we present a few two-dimensional problems in engineering applications,
which are carried out on triangular meshes, including gas-bubble interaction, blast wave
reflection, implosion compression and high speed impact problems.

5.2.1 Gas-bubble interaction problem

In this problem, we simulate a gas-bubble interaction problem from Hass [63–65], which
has been widely used as a benchmark problem for validations of numerical schemes. The
computational domain for our simulation is shown in Fig. 12. A cylindrical bubble with
diameter 50mm is placed in the middle of the square shock tube filled with air. A planar
weak shock of Mach number 1.22 vertical to the walls of the shock tube is produced on
the right of the bubble, and it propagates towards and hits the bubble. The behaviors of
the helium bubble and air are modeled by the ideal gas EOS, and the initial parameters
are presented in Table 3. An almost uniform triangular mesh with edge size 1mm is
used to simulate the gas-bubble interaction. The total number of the mesh is about 65
thousands. The reflective wall boundary conditions are presented on the top and bottom,
and outflow conditions are prescribed on the left and right ends of the domain.

We present the contour images of the numerical density at the times 23µs, 43µs, 53µs,
66µs, 75µs, 102µs, 260µs, 445µs, 674µs and 983µs, and compare them with the experimen-
tal shadowgraphs picked from [63] at times 32µs, 53µs, 62µs, 72µs, 82µs, 102µs, 245µs,
427µs, 674µs and 983µs. As is seen from the comparison, our numerical results are qual-
itatively in good agreement with the experiment. Our numerical simulation provides
clear images for the severely deformed bubble, especially from 427 µs to 983µs, which
show the ability of our methods in dealing with the large deformation of phase interface.

Figure 12: Model of gas-bubble interaction problem.

Table 3: Initial parameters for gas-bubble problem.

Parameters ρ(kg/m3) u(m/s) p(Pa) γ
Helium (bubble) 0.2228 0 101325 1.648

Air (Before Shock) 1.2250 0 101325 1.400
Air (After Shock) 1.6861 -113.534 159059 1.400
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Figure 13: Gas-bubble interaction problem. The first row: 32µs, 53µs, 62µs, 72µs, 82µs; The second row:
23µs, 43µs, 53µs, 66µs, 75µs.
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Figure 14: Gas-bubble interaction problem. The first row: 102µs, 245µs, 427µs, 674µs, 983µs; The second
row: 102µs, 260µs, 445µs, 674µs, 983µs.
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5.2.2 Blast wave reflection of TNT explosion

In this problem, we simulate a TNT explosion problem, where the blast wave is reflected
by a rigid surface near the explosion center. We use this example to assess the isotropic
behavior of TNT explosion in a computational domain 0≤r≤1m, 2m≤z≤8m. The air is
modeled by the ideal gas EOS with adiabatic exponent γ=1.4, and the TNT is modeled
by the JWL EOS with the same parameters as Section 5.1.2. The initial conditions are:
ρ = 1630kg/m3, u = 0m/s, p = 9.5×109Pa for the TNT, and ρ = 1.29kg/m3, u = 0m/s,
p= 1.013×105Pa for the air. The initial interface is a sphere of radius 0.0527m centered
at the height z=5m. All of the physical boundaries are set as rigid walls. The h-adaptive
method is adopted to accelerate the computation and capture the shock front, where
the miminal mesh size is about 10−3m, and the total amount of the mesh is about 24
thousands.

The results of shock produced by the high explosives are shown in Fig. 15. From here
we can see that the shock wave propagates as an expansive spherical surface in the earlier
period. When the spherical shock wave impinges on the rigid surface, it will be reflected
firstly and propagate along the rigid wall simultaneously. When the incident angle ex-
ceeds the limit, the reflective wave switches from regular to irregular, and a Mach blast
wave occurs. The shock parameters, shown in Fig. 16, agree well with the experimen-
tal data in [66–68] and [69]. It should be noted that there exists a significant dispersion
between various reference solutions due to measurement errors in distinct experiments.

5.2.3 Implosion compression problem

We consider a two dimensional problem of implosion compression, which is applied
widely in inertial confinement fusion applications [70,71]. The initial shape of the model
is a sphere containing three distinct mediums, TNT, tungsten and air. The outmost layer
is the high explosive products of TNT, which is described by the JWL EOS with parame-
ters A1=8.524×1011Pa, A2=1.802×1010Pa, ω=0.38, R1=4.6, R2=1.3, ρ0=1842kg/m3.
The intermediate layer is the tungsten, which is described by the stiffened gas EOS with
parameters γ=4.075, ρ0 =7.85g/cm3. The innermost layer is the air, which is described
by the ideal gas with γ=1.4. All the boundaries are set as outflow conditions. The initial
values are

[ρ,u,p]>=


[1.29, 0, 105]>, r<0.1,
[1.9237×104, 0, 105]>, 0.1≤ r≤0.105,
[1.63×103, 0, 105]>, 0.105< r<0.12.

The computational mesh has a total number of 256 thousands with almost uniform
edge size 0.5mm. To accelerate the computation we perform the parallel computing with
64 processors based on the classical domain decomposition methods. Figs. 17 and 18
show the pressure contours of the whole computational domain at different time. Due to
the high pressure of the explosives at the outmost layer, it produces a strong shock wave
inward and drives the tungsten and air moving into the center. The shock wave reaches
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(a) t=1.0µs (b) t=4.3µs (c) t=3.0µs (d) t=7.0µs (e) t=11.0µs

Figure 15: Pressure contours for TNT explosion problem.
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Figure 16: Shock wave parameters for TNT explosion problem. The reference solution 1 is taken from [66], the
reference solution 2 is taken from [67], the reference solution 3 is taken from [68], and the experiment solution
is taken from [69].

a smallest radius at 37.5 µs, whose pressure will increase to about 1.29×1012 Pa. Then
the shock wave will expand and propagate outward with a decreasing shock front. The
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(a) 10×10−6 s (b) 20×10−6 s

(c) 30×10−6 s (d) 32×10−6 s

(e) 34×10−6 s (f) 36×10−6 s

Figure 17: Pressure contours for implosion compression problems.

symmetry of shock waves and interfaces are kept well during the whole computation,
which shows good efficiency of our schemes dealing with the highly nonlinear equations
of state.

5.2.4 High speed impact applications

In this problem, we simulate a two dimensional high speed impact problem between
three elastoplastic solids. A cylindrical rod made of steel with an initial radius of 0.2m is
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(a) 37×10−6 s (b) 37.2×10−6 s

(c) 37.5×10−6 s (d) 39×10−6 s

(e) 40×10−6 s (f) 50×10−6 s

Figure 18: Pressure contours for implosion compression problems.

given a velocity of 7000m/s and impacts against two layers of static aluminum, shown
as Fig. 19(a). Each aluminum has an initial radius of 0.5m and a length of 0.2m. In fact,
the whole problem involves three mediums, the steel, the aluminum and the air. The
equations of state for the hydrostatic pressure component of the steel and aluminum are
both taken as the stiffened gas EOS, and the deviatoric component are both taken as the
perfect elastoplasticity. The initial parameters are ρ0 =7840kg/m3, γ=4.075, µE =78.5×
109Pa, µP=0, YE=160×106Pa for the steel, and ρ0=2790kg/m3, γ=2.75, µE=27.4×109Pa,
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(a) Illustration of the impact model (b) 2.0×10−7 s

(c) 1.0×10−6 s (d) 1.8×10−6 s

(e) 2.5×10−6 s (f) 3.6×10−6 s

Figure 19: Density contours for high speed impact problems.

µP =0, YE =34×106Pa for the aluminum. The air is modeled by the ideal gas EOS with
the following initial parameters: ρ0=1.29kg/m3, γ=1.4 and p0=1.013×105Pa.

The computational mesh has a total number of 40 thousands with almost uniform
edge size 1cm. Figs. 19(b)-(f) show the density contours of the whole steel and aluminum
at different time. When the steel rod reaches the aluminum, strong interaction occurs
between them. Since the steel has a much higher density and stiffness, it will lead to the
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severe deformation and penetration of the aluminum finally. In the whole calculation, we
can see that the interfaces between each pair of the aluminum, steel and air can be cap-
tured sharply, which show that our numerical scheme can handle the large deformation
of compressible materials and phase interfaces naturally.

6 Conclusions

We extend the numerical scheme in Guo et al. [52] to the multi-medium interaction prob-
lems that obey a general Mie-Grüneisen equations of state for the volumetric deformation
and hydro-elastoplastic constitutive law for the deviatoric deformation. The numerical
procedures to solve the multi-medium Riemann problem are elaborated. A variety of pre-
liminary numerical examples and engineering applications validate our methods. In our
future work, we will generalize the framework to more complex multiphase problems,
such as multiphase flow with chemical reaction, heat radiation, and so on, which have
great initial density and pressure discrepencies and more complex physical phenomena.

Appendix

Ideal gas EOS

Most of gases can be modeled by the ideal gas law

p=(γ−1)ρe, (A.1)

where γ>1 is the adiabatic exponent.

Stiffened gas EOS

When considering water under high pressures, the following stiffened gas EOS is often
used [72, 73]:

p=(γ−1)ρe−γp∞, (A.2)

where γ>1 is the adiabatic exponent, and p∞ is a constant.

Murnagham EOS

Murnagham EOS is widely used in models of solid materials

p=
K
γ

[(
ρ

ρ0

)γ

−1
]
+p0. (A.3)

For the steel we adopt the following values ρ0=7800kg/m3, p0=1.0×105Pa, K=2.225×
1011Pa and γ=3.7 [41, 45].



246 R. Li, Y. L. Wang, C. B. Yao / Adv. Appl. Math. Mech., 12 (2020), pp. 212-250

Polynomial EOS

The polynomial EOS [62] can be used to model various materials

p=

{
A1µ+A2µ2+A3µ3+(B0+B1µ)ρ0e, µ>0,

T1µ+T2µ2+B0ρ0e, µ≤0,
(A.4)

where µ=ρ/ρ0−1 and A1, A2, A3, B0, B1, T1, T2, ρ0 are positive constants. In this paper,
we take an alternative formulation in the tension branch [74], where p = T1µ+T2µ2+
(B0+B1µ)ρ0e for µ≤ 0, to ensure the continuity of the speed of sound at µ= 0. Such a
formulation avoids the occurance of anomalous waves in the Riemann problem, which
does not exist in real physics. When B1≤ B0≤ B1+2 and T1≥ 2T2, the polynomial EOS
satisfies the conditions (C1) and (C3). In addition, if the density ρ≥ B0ρ0/(B1+2), then
the polynomial EOS also satisfies the condition (C2).

JWL EOS

Various detonation products of high explosives can be characterized by the JWL EOS [61]

p=A1

(
1− ωρ

R1ρ0

)
exp

(
−R1ρ0

ρ

)
+A2

(
1− ωρ

R2ρ0

)
exp

(
−R2ρ0

ρ

)
+ωρe, (A.5)

where A1, A2, ω, R1, R2 and ρ0 are positive constants. Obviously the JWL EOS (A.5)
satisfies the conditions (C1) and (C2). To enforce the condition (C3) we first notice that

lim
ρ→0+

h′(ρ)=0.

Then it suffices to ensure that h′′(ρ)≥ 0, which is equivalent to the following inequality
in terms of ν=ρ0/ρ:

R1ν−2−ω≥G(ν) :=
A2R2

A1R1
(2+ω−R2ν)exp((R1−R2)ν).

A simple calculus shows that the maximum value of the function G(ν) above is given by

α=
A2R2

2
A1R1(R1−R2)

exp
(
(2+ω)(R1−R2)−R2

R2

)
.

Therefore a sufficient condition for (C3) is that the density satisfies

ρ≤ R1

2+ω+α
ρ0,

which is valid for most cases.
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Mie-Grüneisen equations of state, Res. Math. Sci., 5(3) (2018), p. 31–59.

[54] R. S. DEMBO, S. C. EISENSTAT AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer.
Anal., 19(2) (1982), pp. 400–408.
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