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Abstract. This paper presents an absorbing boundary conditions (ABCs) for wave
propagations on arbitrary computational domains. The purpose of ABCs is to elim-
inate the unwanted spurious reflection at the artificial boundaries and minimize the
finite size effect. Traditional methods are usually complicate in theoretical derivation
and implementation and work only for very limited types of boundary geometry. In
contrast to other existing methods, our emphasis is placed on the ease of implemen-
tation. In particular, we propose a method for which the implementation can be done
by fitting or learning from the simulation data in a larger domain, and it is insensitive
to the geometry and space dimension of the computational domain. Furthermore, a
stability criterion is imposed to ensure the stability of the proposed ABC. Numerical
results are presented to demonstrate the effectiveness of our method.
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1 Introduction

Many physical problems involving wave equations require solutions of essentially infi-
nite domain in only a small region, like seismic wave propagation [11], Maxwell equa-
tion [23], Poison-Boltzmann equation [18], or inverse problem for the Helmholtz equa-
tion [1]. To solve these problems, there are generally two popular tools to overcome the
difficulty of the unboundedness of the spacial domain [2,6]. One is the perfectly matched
layer (PML) and the other is the artificial boundary method (ABM). The PML, raised by
Berenger in 1994 in [4], damps the incident wave in each layer and the performance of
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the absorbing is related to the damping rate and the number of layers [7], and is widely
used in engineering like electromagnetic scattering. The main process of ABM is the de-
sign of ABCs, which reformulate the unbounded problem into an exact or approximate
truncated domain problem. As for building ABCs of wave equations, usually the theo-
retical analysis plays a major part, like Engquist and Majda approximated the ABCs with
a Taylor expansion in [9], and Renaut and Petersen used Chebychev-Padé approxima-
tion instead in [25]. Higdon worked directly with the difference scheme in [15, 16], and
Shojaei and Mossaiby extended it to finite element method [31]. Comparing to time-
domain methods, spectral method also has many advantages like high accuracy and
rapid convergence. And ABC concerning frequency domain have also been researched
thoroughly [30,36]. A recent development on this region is the double absorbing bound-
ary [12], which combines the simple formulation of PML and the high-order accuracy of
artificial boundary together [24]. All these methods accord with the analytical condition
that perfectly absorbs the incident wave at some certain angles of incidence.

However it should be pointed out that those methods have some imperfections in
common. In the first place, it is costly in analysis, especially when we face an irregu-
lar boundary, like a disk or a polygon region, or when we need a higher-order scheme.
It is always not a straightforward replication to popularize the methods, no matter re-
stating the ABC in the new reference axis and approximating it by the finite difference,
nor the analysis of its well-posedness. Next, in some cases it seems to be impossible to
copy the boundary condition mechanically, like the corners of the rectangle, on account
of their bad geometrical symmetry. Hence we have to enlarge the computation region to
a more regular one and drop the results in the added region (so-called fictitious domain
method). While effective, it may be too computationally expensive. At last, due to that
it has been proved that a practical perfectly absorbing boundary condition can never be
realized, see, e.g., [13], all these methods aim at approximating and reducing the reflec-
tion. Therefore they are effective at some angles of incidence while others not so good. In
some situations, we know some information about the incidence beforehand and it limits
the absorbing ability not using it. These methods exported from general analysis obvi-
ously suffer this problem. In a word, all these methods mentioned above are not problem
aimed.

For these reasons, the main purpose of this paper is to give an easy-realizable method
of building ABC for wave equations for any region, which we call learning boundary
condition (LBC) in this paper, since differing from what we referred above, we obtain
our results by machine learning. With the abundant research on the ABC based on func-
tional approximation, the work on this perspective remains open. Our method is easily
realizable, can be applied on various shapes of region, and doesn’t involve the theoretical
analysis of the behavior of the solution to model problems on the boundary, so it can be
readily generalized to other PDEs.

The rest of this paper is organized as follows. In Section 2 we educe our method’s
mathematical formulation. In Section 3, we yield the learning boundary condition for the
computational interval [0,1], which equivalents to the exact ABCs given in [9]. In Section
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4, the method is furthered in two-dimensions of both the corner case and the boundary
case. However, when applied to two-dimensions, our method results in the divergency
of the solution. In Section 4.3, we fulfill our method with taking a stability condition into
consideration, which greatly enhances the performance of the LBC. In Section 5, we dis-
cuss about the pathosis of the learning model, and process ridge regression to strengthen
the generalization ability. Instead of adding stability condition, with this standard ma-
chine learning method the stability is gained once again independent of Section 4. We
end the paper with a conclusion in Section 6.

2 The mathematical formulation

Let’s consider a wave propagating in R2:
wtt =∆w,
w|t=0= f (x,y),
wt|t=0= g(x,y),

(2.1)

for (x,y) ∈ R2 and t ∈ (0,+∞) where f and g are both compactly supported in the left
semi-plane {x < 0}. Now to build an ABC for the left semi-plane, we apply Fourier
transformation on w to achieve:

ξ2ŵ(ξ,ηx,ηy)=(η2
x+η2

y)ŵ(ξ,ηx,ηy), (2.2)

where
w=

∫
ŵ(ξ,ηx,ηy)exp[−i(ξt+ηxx+ηyy)]. (2.3)

But for boundary {(0,y)}, since it is an ABC, only those waves propagating towards right
go through it, therefore on the boundary we must have ηx

ξ < 0. Then by this positivity
formula (2.2) can be:

ηx

ξ
ŵ=−

√
1−

η2
y

ξ2 ŵ, (2.4)

or to say

ηxŵ=−sgn(ξ)
√

ξ2−η2
yŵ. (2.5)

With inverse Fourier transformation, the operator on this boundary can be obtained:

∂w
∂x

=
∫

i sgn(ξ)
√

ξ2−η2
yŵexp[−i(ξt+ηyy)]. (2.6)

Operator (2.6) is a non-local operator which is not applicable in computation. A prac-
tical method used widely is to approximate the operator with local operator, or to say



F. R. Wang, Jerry Z. J. Yang and C. Yuan / Adv. Appl. Math. Mech., 12 (2020), pp. 1384-1415 1387

differential operator. The local operator under Fourier transformation has the form of
polynomials:

∂w
∂x

=
∫

i sgn(ξ)
√

ξ2−η2
yŵexp[−i(ξt+ηyy)]≈

∫
p(ξ,ηy)ŵexp[−i(ξt+ηyy)], (2.7)

where p∈P(C2) is a polynomial on C2. Then the operator can be implemented numeri-
cally on methods like finite difference or finite element.

Concretely speaking, for example, after uniformly partitioning space region and half
time axis into space grid and discrete time step, we can label wk

αβ being w(xαβ,tk), the
value of function w on node xαβ in the space grid at the k-th time step. Then approximate
the differential operator with finite difference method, therefore the iterative formulation
to update the values of the nodes inside the region is known. To design an ABC on the
boundary, the main goal is to derive the format of the formulation updating the values
of the boundary node x0β. If the polynomial is chosen to be p(ξ,ηy)= iξ, we can calculate
the wk+1

0β by forward euler:

0=
∂w
∂x
−
∫
(iξ)ŵexp[−i(ξt+ηxx+ηyy)]

0=
∂w
∂x

+
∂w
∂t

0=
wk

0β−wk
−1β

∆x
+

wk+1
0β −wk

0β

∆t

=⇒wk+1
0β =wk

0β−
∆t
∆x

(wk
0β−wk

−1β), (2.8)

which is the first order ABC in [9].
If the polynomial p(ξ,ηy) is more complex, it will obtain a more complex formula. But

all the polynomial-differentiation-difference-scheme processes lead to the same format:
wk+1

0β , is a linear combination of those values of the nodes near x0β in several previous time

steps, which are defined as the dependent set D k+1
0β ={wk+1−l

ij |xij be close to x0β, 1≤l≤m}:

0=
∂w
∂x
−
∫

p(ξ,ηy)ŵexp[−i(ξt+ηyy)]

0=
∂w
∂x
−∑cm1m2

∂m1+m2

(∂t)m1(∂y)m2
w

0=
wk

0β−wk
−1β

∆x
−∑ c̃m1m2

∑±wk+1−j
αβ

∆tm1 ∆ym2

=⇒wk+1
0β = ∑

D k+1
0β

al
ijw

k+1−l
ij

=∑
ij
(a1

ijw
k
ij+a2

ijw
k−1
ij +a3

ijw
k−2
ij +···+am

ij wk+1−m
ij ). (2.9)
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In precious work, usually a specific polynomial is given in (2.7), then the analysis of
the reflection coefficients follows. However as mentioned in Section 1, instead of theoret-
ical analysis, we apply machine learning to obtain the formulation. Assuming there is a
distribution ρ of the wave vector and wave length, we choose the optimal coefficients to
minimize the population risk for this model:

al
ijw

k+1−l
ij ∈minEρ

∣∣∣i sgn(ξ)
√

ξ2−η2
yŵ−p(ξ,ηy)ŵ

∣∣∣2 . (2.10)

By Parseval’s principle the summary on frequency equals the summary on time:

al
ijw

k+1−l
ij ∈minEρ

∣∣∣∣∣∣∣wk+1
0β − ∑

D k+1
0β

bl
ijw

k+1−l
ij

∣∣∣∣∣∣∣
2

,Losspop(bl
ij). (2.11)

To reduce the difficulty of the computation in (2.11), we replace the population risk with
the empirical risk: Solve the differential equations with several initial condition obeying
the distribution ρ on a region larger enough that the wave propagates through the pre-
vious boundary but does not reach the new boundary. Then let {muk

αβ} be the solution
corresponding to each initial condition. Substituting {muk

αβ} into (2.11) leads to a least
square problem:

al
ij∈min∑

m,k

∣∣∣∣∣∣∣muk+1
0β − ∑

D k+1
0β

bl
ij muk+1−l

ij

∣∣∣∣∣∣∣
2

,Lossemp(bl
ij), (2.12)

which can be easily solved by generalized inverse.
However, like what we are going to discuss about in Section 4.3 and Section 5, not

always does the least square regression work. For stability or the generalization ability,
some constraints must be set. Here we bring l1 regularization and Tikhonov regulariza-
tion in:

l1 : al
ij∈ min
||bj

αβ||1<r
Lossemp(bl

ij), (2.13a)

Tikhonov : al
ij∈ min
||bj

αβ||2<r
Lossemp(bl

ij). (2.13b)

The l1 regularization is also known as ”Least Absolute Shrinkage and Selection Opera-
tor” (or LASSO) problem, see [32], which is a important and hot topic in statistics and
machine learning. Many useful algorithms have been given, such as the famous itera-
tive thresholding algorithm (ISTA), first derived in [27] (see also [28]), later [29], and first
placed on solid mathematical grounds in [17].
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However, here l1 regularization is not for the sake of the sparsity of al
ij and neither

do we need here. On the one hand, the support set of the coefficient can be appointed
a prior since the dependent set is chosen artificially, therefore the unrelated data can be
excluded. On the other hand, without regard to the sparsity we can use interior point
method instead of those algorithms mentioned previously, which is easier to implement
and more stable. Replacing the constraint ||bj

αβ||1<r with a group of linear constraint, we
have:

al
ij∈ min

lq(bl
ij)<r

Lossemp(bl
ij), (2.14)

where lq(b)=±b1±b2±b3±···±bq are all the linear functionals of Rq whose coefficients
are ±1. Then we can set a group of logarithmic barrier functions:

L(bl
ij;µ)=Lossemp(bl

ij)−∑
q

µq×ln(r−lq(bl
ij)), (2.15)

and then solve the unconstrained optimization of (bl
ij;µ) by steepest descent method.

Here µ is a small positive scalar. As µ converges to zero the minimum point of L(bl
ij;µ)

should converge to the solution of original problem. Therefore we iteratively substitute µ
by µ×0.1 and solve the new unconstrained optimization problem until stopping criteria
is satisfied, then we gain a numerical solution of the former constrained optimization.

As for Tikhonov regularization, the motivation and the background will be given later
in section 5, while the solution of this problem is pretty simple: replacing the generalized
inverse (UTU)−1UT of a matrix U with (UTU+λI)−1UT, where λ is the Lagrangian mul-
tiplier. Notice that assuming the largest and smallest singular value of UTU are σ1 and
σ2, its condition number is σ1/σ2 while (UTU+λI)’s is (σ1+λ)/(σ2+λ), which means
less ill-conditioned.

3 The one-dimension case

In this section we perform a simple experiments on interval [0,1] which leads to a bound-
ary condition Lbc1(Learning boundary condition). Then it will be pointed out that it is
exactly the difference form of the perfect absorbing boundary condition.

Let xn=ndx, n∈{0,1,2,··· ,N}, tk=kdt, k∈Z be the uniformly spaced grid. We partition
the interval [0,1] into 1000 nodes and take 0.0009 as the time-step (∆x=0.001, ∆t=0.0009).
Different schemes can be employed to approximate the wave differential operator [19].
We use the centre difference quotients:

wk
n+1+wk

n−1−2wk
n

(∆x)2 =
wk+1

n +wk−1
n −2wk

n
(∆t)2 , (3.1)

which leads to the recursive formula:

wk+1
n =(wk

n+1+wk
n−1−2wk

n)
(∆t)2

(∆x)2 +2wk
n−wk−1

n , n∈{1,2,3,··· ,N−1}, k∈N. (3.2)
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Following the procedure given in Section 2, we have the following scheme with Lbc at
x=1 and a fixed boundary at x=0:

wk+1
0 =0,

wk+1
n =(wk

n+1+wk
n−1−2wk

n)
(∆t)2

(∆x)2 +2wk
n−wk−1

n , n∈{1,··· ,N−1},

wk+1
N = ∑

D k+1
N

aj
i×wk+1−j

i .
(3.3)

The learning function for constructing the learning set are given as:

fl(x)=

{
cos(5(x−0.5)), x∈ [0.4,0.6],
0, else,

(3.4a)

gl(x)=


π

2
sin(5(x−0.5)), x∈ [0.4,0.6],

0, else,
(3.4b)

and the dependent set of wk+1
N is {wk

N ,wk
N−1}. Then the dependent coefficients al

α is de-
rived:

Lbc1 : wk+1
1000=0.8999538×wk

999+0.1000463×wk
1000. (3.5)

Recall that the perfectly absorbing boundary condition given in Eq. (2.6) degenerates in
one-dimension case as ηy = 0. And for those incident wave to be absorbed on x= 1 we
have ηx

ξ <0. So now the perfectly absorbing boundary condition on x=1 is:

∂

∂x
w
∣∣∣

x=1
+
∫

ξ
(−iξ)×ŵ(1,ξ) e−iξtdξ=0, (3.6)

which is: ( ∂

∂x
+

∂

∂t

)
w
∣∣∣

x=1
=0, (3.7)

writing in difference form:

wk+1
N =(1−∆t/∆x)×wk

N−1+∆t/∆x×wk
N , wk+1

N =0.9×wk
N−1+0.1×wk

N , (3.8)

which is almost the same one of Lbc1. It implies the method we applied here works, since
we have reached the same formulate coming from differencing the perfectly absorbing
condition by only performing regression, a standard method used in machine learning,
on data set, which motivates us to put it into higher dimension space.

4 The two-dimension case

In this section, Lbcs in R2 are discussed. The Lbc for corner, the stability condition and
Lbc for a general planar region are provided in turn.
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4.1 Learning corner condition

Usually when people construct the ABC for a bounded rectangle region on the plane
we only take the straight boundary into consideration but rarely consider the corner.
However, it is much harder to analyse the property of the equation on the neighborhood
of a corner and we can just simply treat the corner nodes as boundary nodes of one
of its two sides [3]. This handling leads to the corner reflection, which is verified in this
section. But the machine learning method can easily overcome this difficulty: Specifically
speaking, if the nodes are sequentially numbered (node (αdx,βdy) is numbered to be xαβ),
assume its four corner nodes is iterated analogously like the boundary nodes of one-dim
interval, given by

wk+1
00 = ∑

D k+1
00

al
ij×wk+1−l

ij , (4.1a)

wk+1
0N = ∑

D k+1
0N

bl
ij×wk+1−l

ij , (4.1b)

wk+1
N0 = ∑

D k+1
N0

cl
ij×wk+1−l

ij , (4.1c)

wk+1
NN = ∑

D k+1
NN

dl
ij×wk+1−l

ij . (4.1d)

Then following the same procedure we can obtain the learning boundary condition for
the corner.

4.1.1 Example 3

We partition a square into 1200×1200 nodes with ∆t=0.6∆x as the time-step. The learning
function for constructing the learning set is

fl(x,y)=

{
100cos[12π(4r+x)], r= |(x,y)−(0.5,0.5)|≤0.25,
0, else,

(4.2a)

gl(x,y)=

{
500sin[12π(4r+x)], r= |(x,y)−(0.5,0.5)|≤0.25,
0, else,

(4.2b)

and the dependent set of wk+1
00 is {wk

00,wk
10,wk

01,wk
11}. The dependent coefficients we ac-

quire reads:

Lbc3 : wk+1
00 =wk

00×0.0519+wk
10×0.45050+wk

01×−0.10347+wk
11×0.60047. (4.3)

Then learning boundary condition Lbc3 is built on the four corners of the rectangle [0,1]×
[1,0] symmetrically and the normal boundary nodes, those on the straight boundary, are
setted to equal the precise values, calculated by solving the equation on a larger region
(fictitious domain method). Thus we eliminate the influence of the other nodes and all
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the reflection is produced only by the Lbc3. Also the Lbc4 given in Example 4 (Section
4.1.2) below, the traditional handling of the corner nodes and the fix boundary condition
are applied in the same way for comparison. The numerical results of these four bound-
ary condition are illustrated in Fig. 1. Analysis of the results is provided in the end of
Example 4 (Section 4.1.2).

4.1.2 Example 4

In this example we enlarge the dependent set of the corner node. This time D k+1
0,0

is:{wk+1
10 ,wk+1

01 ,wk+1
11 ,wk

00,wk
10,wk

01,wk
11} and we have:

Lbc4 : wk+1
00 =−0.08732×wk+1

10 +0.07390×wk+1
01 +0.03818×wk+1

11

+0.00196×wk
00+0.60480×wk

10+0.57410×wk
01

−0.20620×wk
11. (4.4)

The numerical results of this boundary condition are illustrated in Fig. 1. As we can see
in this figure, both Lbc3 and Lbc4 have little reflection. Contrasting with the method used
before, which ignores that the reflection is produced by the two sides of the corner, the
learning boundary condition for the corner nodes does reduce the reflection visibly.

4.2 Lbc for irregular boundary

Suppose that in region D 
wtt =∆w,
w|t=0= f (x,y),
wx|t=0= g(x,y).

(4.5)

where D={(x,y)|−∞<x<∞, fd(x)≤y≤ fu(x)}. Let Γ1={(x, fd(x)} and Γ2={(x, fu(x)}.
We now want to build the learning boundary condition for Γ1 and Γ2. Assume

wk+1
nd(n)= ∑

D k+1
nd(n)

al
ij,n×wk+1−l

ij , (4.6a)

wk+1
nu(n)= ∑

D k+1
nu(n)

bl
ij,n×wk+1−l

ij , (4.6b)

where {xnd(n)} and {xn,u(n)} are two sequences of point in space grid to approximate the
boundary Γ1 and Γ2.

We construct two different irregular boundaries in this paper: a polygonal line and
a convex curve. With the space grid of 1200×1200 nodes uniformly partitioning the
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K=640

K=720

K=800

Figure 1: These are the result of Example 3 and Example 4. The first and the second columns correspond to
the Lbc3 and Lbc4 we obtain while the third comes from treating the corner code as one of the upper and lower
boundary, and the fourth is fixing wk

00 =wk
N0 =wk

0N =wk
NN =0.



1394 F. R. Wang, Jerry Z. J. Yang and C. Yuan / Adv. Appl. Math. Mech., 12 (2020), pp. 1384-1415

Figure 2: The figure on the right is the shape of the polygonal line boundary given in Section 4.2 and the left
is the one of the curve. The blue region is the region of computation and the learning boundary condition is
built on the boundary of the blue region and the green region.

rectangle [0,1]×[0,1], concrete forms of these two boundaries are:

Polygonal line :



u(n)=800+int[16n/30], 0≤n≤300,
u(n)=960−int[n/18−50/3], 300≤n≤840,
u(n)=930−int[11n/36−770/3], 840≤n≤1200,
d(n)=375−int[29n/144], 0≤n≤720,
d(n)=230+int[9n/48−135], 720≤n≤1200,

(4.7a)

Curve :

{
u(n)=800+int[cos(π(n−600)/1080)×150], 0≤n≤1200,
d(n)=400−int[cos(π(n−600)/1080)×150], 0≤n≤1200.

(4.7b)

The shape of these two boundary is given in Fig. 2.
In the meantime all the examples have been carried out for the straight line boundary

Γ1={(x,0.25)} and Γ2={(x,0.75)} too.

4.3 The stability criterion

In a discrete system, since we have made the linearly dependence assumption, the it-
erative formula can be written into a matrix form. Let xk

p = wk
ij, where p = N(i−1)+ j.

For example, without the loss of generality, we can assume that the dependent set only
retrospect two time layers. As xk+1

p is linearly dependent on xk
p and xk−1

p , the recursive
formula together with the boundary condition can be written into matrix form as:

xk+1=Axk+Bxk−1. (4.8)

Let yk+1=(xk+1 T,xk T)T, then we have

yk+1=Cyk, (4.9)

where

C=

(
A2+B AB

A B

)
. (4.10)
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Then the spectral radius of the matrix C measures the stability of the iterative formula-
tion. We have calculated the matrix C for a small squared grid and evaluate its eigenval-
ues by power method, namely:  yk =

xk

max|xk| ,

xk+1=Cyk.
(4.11)

Recall the boundary condition for the left semi-plane:

wk+1
0β = ∑

D k+1
0β

al
ij×wk+1−l

ij . (4.12)

The first constraint we make is to limit the dependent set of wl
0β on those points having

the same vertical coordinates (j=β):

wk+1
0β = ∑

i≤0,l≥1
al

iβ×wk+1−l
iβ . (4.13)

This is a reasonable assumption since the derivatives of dy in boundary condition (2.7)
can be transformed into derivatives of dx and dt by ∂2

y=∂2
t−∂2

x. Then by formula (4.9) we
assume that the eigenvectors of the iterative system take the form of:

wk
αβ =λk

q

∫
ηy

ŵα(ηy)exp(−iηyβ∆y). (4.14)

We substitute (4.14) into both the centre difference scheme and the boundary condition
(4.13). We have acquired that:

ŵα+1+ŵα−1=

∆x2
(

λq+λ−1
q −2

)
∆t2 +

∆x2(2−2cos(ηyβ∆y)
)

∆y2 +2

ŵα1,

ŵ0= ∑
i≤0,l≥1

al
iβ×λ−l

q ŵi.

(4.15)

Theorem 4.1. For boundary condition (4.13), if the following criterion is satisfied:∣∣∣∣al
iβ
∣∣∣∣1=∑

il
|al

iβ|<1, (4.16)

and the initial value in the Cauchy problem (2.1) has only the wave propagating towards right
and a compact supported set, then the boundary condition together with centre difference scheme
is a stable numerical scheme for wave equations in the left semi-plane.
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This criterion has been used to prove the stability for some first-order hyperbolic sys-
tems, see Gustafsson, Kreiss, and Sundström [5] and Michelson [22], and been regarded
as a guideline for constructing and analysing boundary condition for wave equations, see
Renaut [25, 26], Higdon [14–16] and Givoli and Cohen [10] and interface condition [34].
In [33, 35] a exhaustive discuss is given by Trefethen concerning the stability of frog-leap
algorithm. It is also closed related with the LASSO problem in sparse models, but the
difference there lies that here Theorem 4.1 does not aim at the sparsity of the coefficients
al

iβ. Inequality (4.16) describes the boundary between the scheme being stable in time
and those not, and usually the solution sneaks over this boundary when we replace the
population risk of the problem Losspop(bl

ij) with the empirical risk Lossemp(bl
ij), therefore

an extra constraint needs built. since the fourier transformation is used in form (4.14),
the proof can not be generalized to irregular boundary. But as we will see in Section 4.4.4
and Section 4.4.5, it does solve the stability of this numerical algorithm.

Proof. To proof the stability in time for the boundary condition is to proof that all eigen-
values of the iterative system have module less than 1, by formula (4.9). since the matrix
in formula (4.9) is not a symmetric matrix, the eigenvalue whose module equals 1 has to
be specially treated. Let’s assume that there is an eigenvalue λ1 whose module is greater
than or equal to 1, then by reductio ad absurdum we will proof there are no non-trivial
solution of ŵα.

Take absolute value in both side of the second formula in (4.15), since |λ1| ≥ 1, by
cauchy inequality:

|ŵ0|=
∣∣∣ ∑

i≤0,l≥1
al

iβ×λ−l
q ŵi

∣∣∣≤||al
iβ||1×||λ−l

1 ŵi||∞

<1×||ŵi||∞ <max
α
|ŵα|, (4.17)

which means that |ŵ0| is not the maximum. But since the wave propagates towards right
and is compactly supported, there must be a maximum in |ŵα| for α<0. Let |ŵγ| be the
maximum, then take the absolute value in both side of the first formula in (4.15) with
α=γ for γ<0:

2|ŵγ|≥
∣∣ŵγ+1+ŵγ−1

∣∣
=

∣∣∣∣∣
[(

∆x
∆t

)2(
λ1+λ−1

1 −2
)
+

(
∆x
∆y

)2(
2−2cos(ηyβ∆y)

)
+2

]
ŵγ

∣∣∣∣∣
≥R

[(
∆x
∆t

)2(
λ1+λ−1

1 −2
)
+

(
∆x
∆y

)2(
2−2cos(ηyβ∆y)

)
+2

]
|ŵγ|. (4.18)

Therefore both R(λq+λ−1
q −2) and R(2−2cos(ηyβ∆y)) are zero, which means λ1=1 and

ηy=0. Apparently that is a constant solution for the wave equations and is stable in time
trivially.
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4.4 Numerical experiments

4.4.1 Example 5

In this experiment, with the space grid given in Section 4.2, the ratio of the time step and
the space step is 0.6, and the learning function is{

fl(x,y)=250{0.1cos[60π(x+5y)]+0.1cos[60π(x+y/5)]+cos[60πr]},
gl(x,y)=250{0.1cos[60π(x+2y)]+0.1cos[60π(x−2y)]+cos[60πr]},

(4.19)

supported in r<0.125 where r=
∣∣(x,y)−( 1

2 , 1
2 )
∣∣
2.

Let D k+1
nd(n) be {wk

nd(n),w
k
nd(n)+1,wk

nd(n)+2,wk−1
nd(n),w

k−1
nd(n)+1,wk−1

nd(n)+2} and D k+1
nu(n) be

{wk
nu(n),w

k
nu(n)−1,wk

nu(n)−2,wk−1
nu(n),w

k−1
nu(n)−1,wk−1

nu(n)−2}. After obtaining the dependent co-

efficients {al
ij,n} and {bl

ij,n} without the stability condition (4.16), we test our learning
boundary condition by solving the initial value problem:

wtt =wxx+wyy,
w|t=0=2000×cos(120πr), r<0.15,
wx|t=0=1000×cos(120πr), r<0.15.

(4.20)

The numerical results are illustrated in Figs. 3, 4 and 5. As we can see, the boundary
condition is unstable. Even in the case where we treat with straight boundary, there is a
distinct reflected wave produced by the learning boundary condition, which means this
naive replication of the one-dim case fails without the stability condition.

4.4.2 Example 6

With the same space and time grid as given in Example 5, same dependent set D k+1
n,d(n) and

D k+1
n,u(n) and the same learning function:{

fl(x,y)=250{0.1×cos[60π(x+5y)]+0.1×cos[60π(x+y/5)]+cos[60πr]},
gl(x,y)=250{0.1×cos[60π(x+2y)]+0.1×cos[60π(x−2y)]+cos[60πr]},

(4.21)

supported in r<0.125, the same learning boundary condition as the one in Example 5 is
obtained. But this time the initial value is exactly the same as the learning function:

wtt =wxx+wyy,
w|t=0=250{0.1cos[60π(x+5y)]+0.1cos[60π(x+y/5)]+cos[60πr]},
wx|t=0=250{0.1cos[60π(x+2y)]+0.1cos[60π(x−2y)]+cos[60πr],

(4.22)

supported in r<0.125.
The numerical results are illustrated in Figs. 6, 7 and 8. The sameness of the learning

data and test data eliminates the generalized error between the population risk (2.11) and
the empirical risk (2.12), which lets the failure of the experiments lead us directly to the
instability.
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K=280

K=440

K=600

K=760

Figure 3: These are the results of Example 5, building learning boundary condition for the ploygonal line
boundary. The first column is the numerical solution and the second column corresponds to the precise solution
acquired from solving the equation in a larger region.

4.4.3 Example 7

We build a simple example with only 10000 nodes to deleave the rectangle [0,1]×[0,1].
The ratio of the time and space step is 0.6. The learning function is:{

fl(x,y)=250{0.1cos[6π(x+5y)]+0.1cos[6π(x+y/5)]+cos[6πr]},
gl(x,y)=250{0.1cos[6π(x+2y)]+0.1cos[6π(x−2y)]+cos[6πr]},

(4.23)
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K=280

K=440

K=600

K=760

Figure 4: These are the result of Example 5, building learning boundary condition for a curve boundary. The
first column is the numerical solution and the second column corresponds to the precise solution acquired from
solving the equation in a larger region.

supported in r< 0.125 and the dependent set of wk+1
n0 is {wk

n0,wk
n1,wk

n2,wk−1
n0 ,wk−1

n1 ,wk−1
n2 }.

Once the coefficients al
ij are acquired without the stability criterion (4.16), so is obtained

the iterative matrix C.
Then solved by power method, the ten largest absolute values of C’s eigenvalues are:
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1.0442227 1.0301901 1.0161737 1.0066512 1.0066512
0.9997243 0.9997243 0.9997080 0.9997080 0.9994696

As we can see, the spectral radius of C in this case is 1.0442227 which is larger than 1
and there are five eigenvalues that are larger that 1, which implies the differential scheme
is not stable.

K=280

K=440

K=600

K=760

Figure 5: These are the result of Example 5, building learning boundary condition for the straight boundary.
The first column is the numerical solution and the second column corresponds to the precise solution acquired
from solving the equation in a larger region.
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K=280

K=440

K=600

K=760

Figure 6: These are the result of Example 6, building learning boundary condition for the polygonal line boundary.
The first column is the numerical solution and the second column corresponds to the precise solution acquired
from solving the equation in a larger region.

4.4.4 Example 8

We build the same system as in Example 7 (Section 4.4.3) and yield the same learning
data set. But this time the regression under the constraint (4.16) is reproduced. Then the
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K=280

K=440

K=600

K=760

Figure 7: These are the result of Example 6, building learning boundary condition for the curve boundary. The
first column is the numerical solution and the second column corresponds to the precise solution acquired from
solving the equation in a larger region.

ten largest absolute values of C’s eigenvalues read:

1.0007314 0.9998302 0.9998302 0.9998161 0.9998161
0.9997712 0.9997712 0.9996096 0.9996096 0.9995813
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K=280

K=440

K=600

K=760

Figure 8: These are the result of Example 6, building learning boundary condition for the straight boundary.
The first column is the numerical solution and the second column corresponds to the precise solution acquired
from solving the equation in a larger region.

A comparison diagram is given below in Fig. 9.

As we can see in the Fig. 9, the absolute values of C’s eigenvalues have been low-
ered by performing the regression under the condition (4.16). So we rerun the same test
experiments in Example 5 and this time the Lbc performs better.
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Figure 9: Ten largest eigenvalues of C.

4.4.5 Example 9

Example 5 in Section 4.4.1 is investigated. With the same discrete form used, we have
the same learning data set but the optimization problem is under the constraint (4.16).
Even though for a 1200×600 space grid the calculation of the eigenvalues of the iteration
matrix is too costing to be done (dimC = 1.44×106), still we can see the stability of the
new learning boundary condition and how important the constraint is, see the results of
the experiments illustrated in Figs. 10, 11 and 12.

In these figures, the reflected waves are reduced to a very low intensity in all three
cases: polygonal line, curve and straight boundary. Recall that the stability condition
(4.16) was raised only in case of straight boundary before, however the straightforward
replication to the irregular boundary cases also works, at least in these experiments.
Therefore a practical method of building learning boundary condition for any region for
wave equations is deduced.

4.5 Remark

For the boundary condition of the corner, as we can see in those experiments, if simply
regarded as an ordinary node of one of its boundary, the corner node leads to some reflec-
tion, and however our method reduces this phenomenon. But for a continuous boundary,
instead of isolated nodes like the endpoints of the interval or corners of rectangle, the Lbc
we build brings about the divergency of the solution without the constraint of stability
criterion, especially when the incident wave is generated from the initial value that dif-
fers from the learning function. Even for the straight boundary, neither can we get a
good result. Once the stability analysis of the previous method is put into force and a
constraint of the dependent coefficients aj

αβ is made, it effectively reduces this instability.
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K=280

K=440

K=600

K=760

Figure 10: These are the result of Example 9, building the learning boundary condition coming from (5.13) for
the polygonal line boundary. The first column is the numerical solution and the second column corresponds to
the precise solution acquired from solving the equation in a larger region.

5 Generalization ability and ridge regression

In last section, the stability criterion is introduced, with which the learning boundary
condition have long-time stability. However, in this section the problem raised in Section
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K=280

K=440

K=600

K=760

Figure 11: These are the result of Example 9, building the learning boundary condition coming from (5.13)
for the curve boundary. The first column is the numerical solution and the second column corresponds to the
precise solution acquired from solving the equation in a larger region.

4.2 is viewed from another direction. First we point out that the stability criterion has
only been discussed when dealing with straight boundary and there is no idea whether
it still works with irregular boundary, and the export of the criterion is nothing easier
than the perfectly absorbing boundary condition. More or less it contradicts our wish of
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K=280

K=440

K=600

K=760

Figure 12: These are the result of Example 9, building the learning boundary condition coming from (5.13) for
the straight boundary. The first column is the numerical solution and the second column corresponds to the
precise solution acquired from solving the equation in a larger region.

not analytical-costing. So in this section we take the pathosis of the data set as the major
cause of the problem, and settle with Ridge Regression method.
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5.1 Ridge regression

Carefully compare Figs. 6, 7, 8 with Figs. 3, 4, 5, one can find that the solution whose
initial-values match the learning functions is better than the others. We may infer that
since our learning set comes from just one solution, the learning boundary condition
don’t properly predict the behaviour of those we haven’t learned from, which means a
poor generalization ability.

In fact, as we can only minimize the error of those finite solution sampled, the coef-
ficients acquired by the empirical risk (2.12) dose not satisfy the minimum value of the
population risk (2.11). The error between the empirical risk (2.12) and the population
risk (2.11) is called the generalization error, which is the main difficulty preventing the
application of the learned model on unlearned data. Usually the generalized error can be
divided into two part. The first one is the error between the distribution from which the
data is generated and the one implied by the model. In LBCs, since the data is generated
artificially by the numerical solution of the equation, this error can be omitted. The other
part is the truncation error, if we let

D(bl
ij,w

k+1
0β )=

∣∣∣wk+1
0β − ∑

D k+1
0β

bl
ijw

k+1−l
ij

∣∣∣2
with respect to a sampling obeying ρ, Monte Carlo analysis tells us that the difference is:

E
(

Losspop−Lossemp
)2
=E

(∫
D(bl

ij,w
k+1
0β )ρ(dwk

0β)−
1
N ∑

m,k
D(bl

ij,mwk+1
0β )

)2

=
1
N

[∫
ρ
D2(bl

ij,w
k+1
0β )−

(∫
ρ
D(bl

ij,w
k+1
0β )

)2
]

=
1
N

Var
(

D(bl
ij,w

k+1
0β )

)
, (5.1)

which means that to reduce the generalization error between the population risk and the
empirical risk is to reduce the variance of the model. Therefore, some bias may be traded
for the variance of the model. Thus a Tikhonov regularization is applied:

Tikhonov : al
ij∈ min
||aj

αβ||2<r
Lossemp(bl

ij). (5.2)

Invented independently in many different contexts, ridge regression, also called
Tikhonov regularization, was first expounded by E. Hoerl in [8], and following whom
it is known in the statistical literature as ridge regression [20,21]. The choice of coefficient
r is always a tough question but however, in our paper, we simply take ||b||2 < 1 as the
constraint for an obvious physical reason. In Section 2 it has been shown how to solve
this problem.
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5.2 Numerical experiments

5.2.1 Example 10

We build the same system as in Example 7 (section 4.4.3) and this time we produce the
ridge regression on the data set instead. Observe that this condition is weaker than (4.16):
||x||1<1=⇒||x||2<1. Both the condition numbers of the regression matrix and the eigen-
values of the iteration matrix are computed and illustrated below. As shown in Fig. 13,
those regression matrixs have large condition numbers, which confirms our assumption
of large variance. But for ridge regression, the condition number of the regressive ma-
trix is much smaller. At least, no matter the method works or not, the ridge regression
markedly changes the numerical illness of the problem.

Also the ten largest eigenvalues of the iteration matrix C are evaluated as we did in
Section 4.3 in Fig. 14.

Figure 13: The Logarithms of Condition Numbers of regressive matrix.

Figure 14: Ten largest eigenvalues of iterative matrix.
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K=280

K=440

K=600

K=760

Figure 15: These are the result of Example 11, building the learning boundary condition coming from (5.2) for
the polygonal line boundary. The first column is the numerical solution and the second column corresponds to
the precise solution acquired from solving the equation in a larger region.

5.2.2 Example 11

As Example 9 (Section 4.4.5), Example 5 is redone with the ridge regression method. The
results of the numerical solution are shown in Figs. 15, 16 and 17.
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K=280

K=440

K=600

K=760

Figure 16: These are the result of Example 11, building the learning boundary condition coming from (5.2)
for the curve boundary. The first column is the numerical solution and the second column corresponds to the
precise solution acquired from solving the equation in a larger region.

As illustrated in these figures. These learning boundary condition efficaciously re-
duces the reflex wave also. Now another method for building learning boundary condi-
tion is inferred by the regression ridge method.



1412 F. R. Wang, Jerry Z. J. Yang and C. Yuan / Adv. Appl. Math. Mech., 12 (2020), pp. 1384-1415

K=280

K=440

K=600

K=760

Figure 17: These are the result of Example 11, building the learning boundary condition coming from (5.2) for
the straight boundary. The first column is the numerical solution and the second column corresponds to the
precise solution acquired from solving the equation in a larger region.

5.3 Remark

Fig. 14 shows that both the stability criterion and ridge regression, at least in this case,
help us gain the stability. The only difference between the stability criterion and ridge
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regression is the motivation. Latter one comes from machine learning and its adhibition
in more complicating case, like other kinds of partial differential equations, is realizable.

6 Conclusions

In this paper, a new machine learning method to build learning boundary condition for
wave equations is proposed. Compared with former methods, our machine learning
method has three advantages. First, instead of the costing theoretical analysis, regression
is a much briefer process, and its further generalization like building learning bound-
ary condition for Maxwell function or elastic wave equations is realizable. Even if we
don’t have the stability criterion like the one given in Section 4.3, carefully adding one
regularization term in regression according to the property of the data set will work well
too. Second, not always the boundary that we face are regular. And our method can
effectively deal with all various boundary in any dimensions. Finally, when we have
some information about the incidence beforehand, that is the ρ in (2.11), we can choose
the learning function obeying this distribution and reach a targeted learning boundary
condition. It will enhance the absorbing ability and do better than an average ABC.
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