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Abstract. In this paper, we consider the optimization problem of identifying the pol-
lution sources of convection-diffusion-reaction equations in a groundwater process.
The optimization model is subject to a convection-diffusion-reaction equation with
pumping point and pollution point sources. We develop a linked optimization and
simulation approach combining with the Differential Evolution (DE) optimization al-
gorithm to identify the pumping and injection rates from the data at the observation
points. Numerical experiments are taken with injections of constant rates and time-
dependent variable rates at source points. The problem with one pumping point and
two pollution source points is also studied. Numerical results show that the proposed
method is efficient. The developed optimized identification approach can be extended
to high-dimensional and more complex problems.
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1 Introduction

A rapid increase in industrial activities is accompanied by the release of substantial quan-
tities of pollutants. Environmental pollution has been recognized to be an important and
difficult problem that needs to efficiently control the process of industrial releases, etc.

It is no doubt that identifying unknown groundwater sources is a prerequisite for the
management and development decision in the water quality, which is also called as the
inverse source problem of the groundwater flow. Some methodologies have been pro-
posed for pollution source identifications, such as non-linear least-squares method [1], a
geo-statistical approach [17], constrained robust least square approach [20], and so on.
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On the other hand, the aquifer simulation models have been combined with the op-
timization models to achieve groundwater management objectives for identifying un-
known groundwater pollution sources [5,6,14,16]. In these literatures, they embeded the
groundwater flow and solute transport equations into the optimization model, and the
groundwater flow and solute transport equations need to be solved numerically firstly.
While the numerical schemes used in papers [5, 6] and [14] were the Galerkin finite ele-
ment and classical finite difference methods, these methods may bring nonphysical os-
cillation to convection dominated diffusion problems where the diffusion coefficients are
small. Furthermore, the optimization algorithm of paper [5] were MINOS and NPSOL,
while paper [14] used MINOS and papers [6] and [16] used Simulated Annealing (SA)
and artificial neural network (ANN) respectively. Each of these optimization algorithms
has advantages and limitations, authors directly used them and did not compare results
there. Our constraint equations in this study are convection diffusion reaction equations,
which are different with previous models. We use Differential Evolution algorithm as
optimization algorithm and obtain the feasibility of our identification model.

In this paper, we study the optimization of identifying the pollution sources for a
groundwater river. A linked simulation-optimization model is proposed, where the con-
vection diffusion reaction equations are computed by the improved/upwind finite dif-
ference approach that can avoid nonphysical oscillation of numerical solutions, and the
optimization is solved by the constrained Differential Evolution optimization algorithm.
The advantage of the methodology is the external linking of the numerical simulation
model with the optimization model. We build the objective function aimed at minimiz-
ing the weighted sum of squared deviation between observed and simulated concentra-
tions at observation points over time, which also satisfies the constraints of the pumping
and injection rates and the concentration restrictions. This process can have the physi-
cal explanation: searching the optimal rate, to minimize, in a certain range, the objective
function of the simulated concentrations which satisfying the real environment at the
same time. We use the constrained Differential Evolution optimization algorithm to solve
the optimization problems, which provides the advantages of its global solution solving
feature, simplicity, powerful search capability, compact structure, and convergence. Nu-
merical experiments are taken for constant injection rates at one to three source points
respectively and for variable rates at one source point. We also consider an example with
one pumping point and two pollutant source points. Numerical results show that the de-
veloped method is efficient. The method can be extended to high-dimensional and more
complex problems.

This paper is organized as follows. In Section 2, we present the mathematical model
of the convection diffusion reaction equations with point pollutant sources and pumping
wells and give the numerical scheme for solving the convection diffusion reaction equa-
tions. In Section 3, we propose a mathematical optimization problem with constraint of
numerical solution systems of PDEs. The optimization solving algorithm is described in
Section 4. Numerical experiments are presented in Section 5 and some conclusions are
addressed in Section 6.
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2 Problem formalization

2.1 The governing equations

Groundwater solute transport process [7, 8] is a very complex process. We consider an
optimization problem of identifying the pollution sources from the measurement data
specified at some points in a watershed. Such a model is related to the detection of pol-
lution sources causing water contamination in some regions. With the consideration of
the solute diffusion, the movement of watershed and self-purifying function of water
system, the concentration of pollution c(x,t) in a watershed is governed by

∂c(x,t)
∂t

+v
∂c(x,t)

∂x
−D

∂2c(x,t)
∂x2 +Rc(x,t)+

np

∑
m=1

q∗mc(x,t)δ(x−xpm)

=
ns

∑
j=1

qj(t)c∗δ(x−xsj), x∈ [0,L], t∈ [0,T],

c(0,t)= c(L,t)=0, t∈ [0,T],
c(x,0)= c0(x), x∈ [0,L],

(2.1)

where v>0 denotes the velocity of watershed movement in the direction of x, D is diffu-
sion coefficient, R is a reaction coefficient describing the self-purifying function of water-
shed. q∗m is called as the pumping rate and xpm is the location of pumping point, which
means that the fluid flows out at this well point. np is the number of pumping points.
The right hand side of the equation is the source term that causes the pollution, in which
xsj ∈ [0,L], j = 1,··· ,ns are the source locations and qj(t)∈ L2[0,T] are the injection rates
satisfying qj(t)>0 for 0≤t≤T∗ and qj(t)≡0 for T∗<t≤T. This condition implies that the
source does not release pollutants any more after some moment T∗. ns is the number of
pollution sources. δ(x−xsj) is the Dirac Delta function for which will give the definition
in the next subsection.

The optimization problem considered in this paper can be stated as follows. For given
measurement data c(xo1 ,t), c(xo2 ,t), 0< t≤T, specified at two interior observation points
0< xo1 < xo2 < L, and assuming that the locations of the pollution sources and pumping
points are known, we will optimally identify the pumping rates and injection rates. There
is also another description that if the concentrations at xoi , c(xoi ,t), are expected to satisfy
the standard range of environment, how can we optimally identify the strengths of the
point sources and the pumping rates.

2.2 Numerical scheme of the model

Knowing the definition of the Dirac Delta function in the model (2.1), it has the form as

δ(x)=

{
+∞, x=0,
0, x 6=0,

(2.2)
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satisfying the constraint condition ∫ +∞

−∞
δ(x)dx=1. (2.3)

It is clear that the so-called Dirac Delta ”function” is not a function in conventional sense.
In particular, δ(x−xs) must be singular at point x= xs. So we often adopt a sequence of
functions to approximate it in the process of computation. Here we take it as

ϕj(x)=


1

2
√

πε
exp

(
−
(x−xsj)

2

4ε

)
, |x−xsj |≤2

√
2ε,

0, otherwise.
(2.4)

As ε→0, it approximates the Dirac Delta function.
To solve the direct problem (2.1) numerically, we begin by discretizing the spatial

domain by placing a grid over the domain. For convenience, we will use a uniform
grid, with grid spacing h = L/nx. The grid points are xi = ih, i = 0,1,··· ,nx. Likewise,
we discretize the time domain by placing a grid on the temporal axis with grid spacing
∆t=T/nt, where nt >0 is the number of total temporal steps.

Notationaly, we will define Ck
i to be the approximation to the function c(x,t) at the

point (ih,k∆t), and define qk
j as the approximation to qj(t) at t = k∆t, and ϕj(x) is the

approximation to Dirac Delta function as above. Here we suppose the pollution source
points and pumping points are all in grid points, where xsj = Isj h, j=1,··· ,ns, xpm = Ipm h,
m=1,··· ,np and Isj , Ipm are integer numbers. Due to the smaller diffusion coefficients, we
use the upwind finite difference to approximate the convection term v ∂c

∂x as the classical
central difference will make numerical solution oscillate heavily.

Approximating the partial differential equation (2.1), we get the upwind numerical
scheme as

Ck
i −Ck−1

i
∆t

+v
Ck

i −Ck
i−1

h
−D

Ck
i+1−2Ck

i +Ck
i−1

h2 +RCk
i +

np

∑
m=1

q∗mCk
i δIpm ,i

=
ns

∑
j=1

qk
j ϕj(ih), i=1,··· ,nx−1, k=1,··· ,nt.

Remark 2.1. During the pollution procedure, as the diffusion coefficient D is often much
smaller than transport velocity v, it is very difficult to solve the convection dominated
diffusion problem numerically. Furthermore, the central finite difference method and
classical finite element method may introduce nonphysical oscillations into numerical
solutions [13, 18]. In paper [13], the author proposed two upwind schemes based on the
generalized finite difference methods, and experiments show that numerical solutions of
two-dimensional convection-dominated diffusion problems by using generalized finite
difference method occur oscillation, while the upwind schemes are still stable. Paper [18]
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modified the Crank-Nicolson scheme, so that it can permit the use of a larger time step
to reach a given accuracy and it is still efficient when the transport coefficients are larger
than the diffusion coefficient. Thus, we adopt the upwind finite difference method in-
stead of the central finite difference to avoid nonphysical numerical oscillation.

Then the scheme can be written as:(
−v

∆t
h
−D

∆t
h2

)
Ck

i−1+
(

1+R∆t+v
∆t
h
+2D

∆t
h2 +∆t

np

∑
m=1

q∗mδIpm ,i

)
Ck

i

+
(
−D

∆t
h2

)
Ck

i+1=Ck−1
i +∆t

ns

∑
j=1

qk
j ϕj(ih). (2.5)

Let

a=−v
∆t
h
−D

∆t
h2 and d=−D

∆t
h2 ,

bi =


1+R∆t+v

∆t
h
+2D

∆t
h2 +q∗m∆t, if i= Ipm , m=1,··· ,np,

1+R∆t+v
∆t
h
+2D

∆t
h2 , else,

then, the coefficient matrix is

A=


b1 d
a b2 d

. . . . . . . . .
a bnx−2 d

a bnx−1

,

Fk =( f k
1 , f k

2 ,··· , f k
nx−1)

τ, where f k
i =Ck−1

i +∆t
ns

∑
j=1

qk
j ϕj(ih).

Thus, the scheme (2.5) can be transferred into the following matrix form:

ACk =Fk, (2.6)

where Ck =(Ck
1,Ck

2,··· ,Ck
nx−1)

τ, k=1,··· ,nt, and nx,nt are the numbers of the total spatial
and temporal steps, respectively.

3 Optimization model of identification

The goal of the optimization of source identification model is to determine unknown pol-
lution source characteristics, such as the discharge rates, with a constraint of numerical
solution of governing equation.
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The objective is to search for a feasible set of source intensities which minimizes the
deviations between the observed-concentration and simulated-concentration based on
the numerical solutions of governing equations corresponding to this set of sources. This
can be achieved by minimizing the weighted sum of these squared differences between
observed and simulated concentrations for all spatiotemporal points.

The optimized identification model can be defined as:

Min
qmin≤qk

j ,q∗m≤qmax
∑

(l,k)∈Zc

ωk
l [〈Ck

l 〉obs−Ck
l ]

2 (3.1)

subject to:

ACk =Fk, (3.2a)

cmin≤Ck
l ≤ cmax, (l,k)∈Zc, (3.2b)

where the spatio-temporal combination Zc represents the set of the observation locations
and time levels. We consider two observation points o1 and o2, and use l to be the corre-
sponding grid points, named as l=(l1,l2), where k takes all the temporal steps.

The weights ωk
l , (l,k)∈Zc, are defined as:

ωk
l =

1
[〈Ck

l 〉obs+η]2
,

which are intended to normalize the terms of the objective function. It is preferable to
add a constant to the observation concentration to prevent small difference at low con-
centration to dominate the objective function. η generally depends on the order of the
concentration values. In real life problems, it may be a fraction of the difference between
largest and smallest concentration values.

4 Optimization algorithm

We propose to use Differential Evolution (DE) algorithm [4, 9–12, 15, 19, 21] to solve the
optimization problem (3.1)-(3.2b). DE algorithm was first developed in [19] for solving
optimization problems over continuous domains. It has further been developed to solve
the handling multi-objective problems [15], the constrained optimizations and large scale
optimization problems [9–12], etc.

Most of the traditional optimization methods, such as Gradient Descent, Conjugate
Gradient, Newton’s method and so on, are gradient based search techniques which re-
quire auxiliary properties like differentiability and continuity of the objective function,
and they also do not guarantee to obtain the global optimum. Thus, many scientists have
laid emphasis on population based search technique like Evolution Algorithms and the
DE algorithm is a special evolution algorithm.



Y. J. Yuan and D. Liang / Adv. Appl. Math. Mech., 13 (2021), pp. 1-17 7

Comparing with other Evolution Algorithms, the advantages of using the DE algo-
rithm for solving global designing problems are its global solution finding property, sim-
plicity, powerful search capability, compact structure, and high accurate characteristics.

There have been many papers compared the results of DE with other optimization
algorithms. For example, paper [19] lists the competence of DE with annealed version
of the Nelder and Mead strategy (ANM), Adaptive Simulated Annealing (ASA), Breeder
Genetic Algorithm, Evolutionary Algorithm with Soft Genetic Operators and Stochastic
Differential Equations. In most instances, DE outperformed all of the above minimization
approaches in terms of required number of function evaluations necessary to locate a
global minimum of the test functions. In paper [22], authors list the comparing results
of novel modified DE with Artificial Immune algorithm, Genetic algorithm and Particle
Swarm approach. Experiments show that it has higher efficiency than the other methods
in the literature on finding better feasible solutions of most constrained problems.

We present an extension of the DE algorithm to handle nonlinear constraint functions.
For simplicity, we redescribe the optimized identification problem.

Let~q={qk
j , 1≤ j≤ns, 0≤k≤nt; q∗m, 1≤m≤np}∈D, and make it to satisfy the following

optimal problem:

Min
~q

f (~q)= ∑
(l,k)∈Zc

ωk
l

(
〈Ck

l 〉obs−Ck
l

)2
(4.1)

with
ACk =Fk, 1≤ k≤nt, (4.2)

and subject to:

gk
l (~q)=Ck

l −cmax≤0, l= l1,l2, 1≤ k≤nt, (4.3a)

gnt+k
l (~q)= cmin−Ck

l ≤0, l= l1,l2, 1≤ k≤nt, (4.3b)

and boundary constraint: ~q∈D, i.e.,~qmin≤~q≤~qmax.

Definition 4.1. For above constrained optimization problem (COP) (4.1)-(4.3b), we define
the function: φ(x) : D→R by

φ(~q)= ∑
(l,k)∈Zc

(Gk
l +Gnt+k

l ),

where

Gk
l (~q)=


1
2

, gk
l (~q)≤0,

1
(1+exp(gk

l (~q)))
, otherwise,

(4.4a)

Gnt+k
l (~q)=


1
2

, gnt+k
l (~q)≤0,

1
(1+exp(gk

l (~q)))
, otherwise.

(4.4b)
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Let S={~q|~q∈D and gk
l ≤0 and gnt+k

l ≤0}. It is obvious that φ(~q)=nt when ~q∈S and
0<φ(~q)<nt when~q 6∈S. The more of the constraint violation number of~q, the less of the
value of φ(~q).

Definition 4.2. Suppose ~q and ~p are two different individuals from the next two genera-
tions, we define the following function:

prior(~q,~p)=
{

1, φ(~q)=φ(~p) and f (~q)< f (~p) or φ(~q)>φ(~p),
0, otherwise.

(4.5)

If the constraint violation number of ~q is less than ~p, that is φ(~q)>φ(~p), we say that
~q is prior to ~p and prior(~q,~p)=1. The objective function value is further compared when
the constraint violation numbers are equal as φ(~q)=φ(~p), and the vector ~q with smaller
objective function value f (~q) will prior to the other one ~p.

Finally, we will give the description of the extended Differential Evolution algorithm:

(1) Set the control parameters. Set the number of the population Np, mutation opera-
tor Fxc, crossover rate CR, the most generation Gmax and the stop criteria.

(2) Initialize population. Set G=0, and define Np N-dimension vectors, so-called in-
dividuals, which encode the candidate solutions: ~qi,G = (q1

i,G,··· ,qN
i,G), i = 1,··· ,Np

towards the global optimum. The initial population should better cover the en-
tire search space as much as possible, and they are often generated by uniformly
randomizing individuals within the search space constrained by the prescribed
minimum and maximum parameter bounds ~qmin = (q1

min,··· ,qN
min) and ~qmax =

(q1
max,··· ,qN

max). For example, the initial value of the jth parameter in the ith in-
dividual at the generation G is generated by:

qj
i,G =qj

min+rand(·)·(qj
max−qj

min),

where rand(·) is a random number in [0,1].

(3) Mutation operation. For vector ~qi,G, i= 1,··· ,Np, a perturbed vector ~vi,G+1, called
mutant vector, is generated by

~vi,G+1=~qr1,G+Fxc ·(~qr2,G−~qr3,G),

where r1,r2,r3 ∈ [1,Np] are integers, they are chosen randomly, they are different
from each other and different from index i. Fxc∈ [0,2] is a real and constant factor,
which controls the amplification of the difference variation (~qr2,G−~qr3,G).

Remark 4.1. It should be noted that there is not only one perturbed method, we list
the other four frequently used mutation strategies implemented in the code.

~vi,G+1=~qbest,G+Fxc ·(~qr1,G−~qr2,G); (4.6a)
~vi,G+1=~qi,G+Fxc ·(~qbest,G−~qi,G)+Fxc ·(~qr1,G−~qr2,G); (4.6b)
~vi,G+1=~qbest,G+Fxc ·(~qr1,G−~qr2,G)+Fxc ·(~qr3,G−~qr4,G); (4.6c)
~vi,G+1=~qr1,G+Fxc ·(~qr2,G−~qr3,G)+Fxc ·(~qr4,G−~qr5,G). (4.6d)
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(4) Crossover operation. Crossover operation is applied to each pair of target vector
~qi,G and its corresponding mutant vector ~vi,G+1 to generate a trial vector: ~ui,G+1 =
(u1

i,G+1,··· ,uN
i,G+1). In the basic version, the DE algorithm employs the binomial

crossover defined as bellow:

uj
i,G+1=

{
vj

i,G+1, if randb(j)≤CR or j= rnbr(i),

qj
i,G, otherwise,

(4.7)

where j=1,··· ,N, randb is a list of random number and randb(j) is the jth number,
rnbr is a randomly chosen integer in [1,N], the crossover rate CR is a user-specified
constant within the range [0,1].

Remark 4.2. There exists another exponential crossover operator in addition to bi-
nomial crossover.

(5) Selection operation. After the mutation and crossover operations, the trial vector
~ui,G+1 is compared with the old vector ~qi,G. If the trial vector has an equal or better
objective value, then it replaces the old vector in the next generation. This can be
presented as follows:

~qi,G+1=

{
~ui,G+1, if prior(~ui,G+1,~qi,G)=1,
~qi,G, otherwise.

(4.8)

(6) Let G=G+1. If G≤Gmax and the stop criteria is not satisfied, then turn to Step (2).
Otherwise, output the optimal solution~qi,G+1.

5 Numerical experiments

In this section, we will consider our optimization identification method by two kinds of
examples based on whether or not the pollution source intensities depend on time t.

The data, used as observation data for the test of the proposed model and algorithm
here, are obtained from the following relationship:

〈Ck
l 〉obs = 〈Ck

l 〉simul+ξ〈Ck
l 〉simul(2rand(·)−1).

The scheme of perturbing the numerically simulated concentration data is analogous to
collecting and then testing multiple samples of contaminated water at each spatiotem-
poral observation location. It is assumed that observation datum obey a normal distri-
bution. The mean of the normal distribution is the exact datum 〈Ck

l 〉simul , which can be
obtained from the simulation with actual intensity. The standard deviation equals to
some fraction ξ of the exact datum, which called noise level. While ξ =0 means that it is
error free. The rand(·) is a random number between [0,1].
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5.1 Experiment 1

In this subsection, we firstly give an example, that compares the improved/upwind finite
difference (UFD) approach with central finite difference (CFD), to show that the central
FD can bring nonphysical oscillations into numerical solutions.

We consider the following convection-dominated diffusion problem:
∂c(x,t)

∂t
+v

∂c(x,t)
∂x

−D
∂2c(x,t)

∂x2 +Rc(x,t)=0.5, x∈ [0,1], t∈ [0,1],

c(0,t)= c(1,t)=0, t∈ [0,1],
c(x,0)= x, x∈ [0,1].

(5.1)

As shown in Fig. 1, for the convection dominated diffusion problem, we can see that
the numerical solution of CFD is consistent with the numerical solution of UFD when the
space step is dx=0.01 (a), but it will occur oscillation when the space step becomes larger
(b). Since the classical central finite difference method may produce wrong solution (os-
cillation), we use the upwind finite difference method to solve the convection-dominated
diffusion equations which are the constraint equations of the optimization model.
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Figure 1: Numerical solutions by using UFD and CFD when v=10.0, D=0.1 and R=0 with steps (a): dx=0.01,
dt=0.01 and (b): dx=0.05, dt=0.01.

5.2 Experment 2

In this example, we suppose that there is no pumping point, the pollution flow is in
a portion of the river of length L = 1 during a period T = 1.2 and with T∗ = 1.0. The
diffusion coefficient is D = 0.05, the velocity of the watershed is v = 1.0 and the self-
purifying coefficient is R=0.125. The initial condition that we take here is c0(x)=0.

We take h=0.01, ∆t=0.01. Suppose each source’s injection rate is constant during all
the active time t. In this example, three cases are studied.
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Table 1: Identified results of injection rates with source location at s1 = 0.4, observation locations at o1 =0.1
and o2 =0.6, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 0.3 0.3 0.2999735 0.2998348

Table 2: Identified results of injection rates with source location at s1 = 0.4, observation locations at o1 =0.1
and o2 =0.6, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 0.25 0.2499096 0.2499085 0.2498493

Table 3: Numerical results of injection rates with source locations at s1 = 0.2 and s2 = 0.4, the observation
locations at o1 =0.1 and o2 =0.6, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 0.2 0.2 0.1999599 0.1995368
q2 0.3 0.3 0.2999852 0.3000880

Table 4: Numerical results of injection rates with source locations at s1 = 0.2 and s2 = 0.4, the observation
locations at o1 =0.1 and o2 =0.6, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 12.0 11.99995 11.99934 12.01011
q2 18.0 17.99947 17.98531 17.98590

In the first case, we consider the simplest situation where there is only one pollution
source point at s1=0.4, the observation points are situated at o1=0.1 and o2=0.6. Perfor-
mance evaluations are done for error free and with noise level of ξ = 0.005 and ξ = 0.01
in observation data. The numerical results obtained by solving the proposed optimized
source identification model are presented in Tables 1-2. Here, we use two different actual
injection rates to check the feasibility of the method.

The second case considers a problem with two pollution sources located at s1 = 0.2
and s2=0.4. The locations of the observation points are same as the first case. Numerical
evaluations are done for error free and with noise level of ξ=0.005 and ξ=0.01 in obser-
vation data. The numerical results obtained by solving the proposed optimized source
identification model are presented in Tables 3-4, which also use two sets of different ac-
tual injection rates to check the feasibility.

In the third case, we consider three pollution source points at s1 = 0.2, s2 = 0.4 and
s3=0.6, and two observation points at o1=0.1 and o2=0.8. Numerical computations are
done like the former two cases. The results for using two different sets of actual injection
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Table 5: Results of injection rates with source locations at s1 =0.2, s2 =0.4 and s3 =0.6, the observations at
o1 =0.1 and o2 =0.8, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 0.2 0.2 0.2000546 0.2001756
q2 0.3 0.3000001 0.3000014 0.2983591
q3 0.4 0.3999996 0.4003360 0.4011268

Table 6: Results of injection rates with source locations at s1 = 0.2, s2 = 0.4 and s3 = 0.6, the observation
locations at o1 =0.1 and o2 =0.8, and with different noise ξ.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q1 21.0 20.99987 20.99662 20.96585
q2 15.0 14.99824 14.98989 15.01102
q3 4.0 4.000161 4.000209 4.011969

rates are given in Tables 5-6.

From Tables 1-6, we can see clearly that the numerical optimized identified rates are
in a great agreement with actual values. They are almost equal to actual rates, when
concentration measurement data have small error. They have errors when some bigger
noises are used in observed data.

5.3 Experment 3

For this example, physical parameters of the problem are the same with Experiment 2,
while the pumping points are also involved.

We set the pumping point at p1=0.5, the pollution sources at s1=0.2 and s2=0.6, and
the observation points at o1=0.1 and o2=0.8. Tables 7-8 give the numerical results using
different noise levels in observation concentration measurement data. The pumping rate
and source injection rates are efficiently identified with different noise errors. Meanwhile,
while the source injection rates can be simulated more exact with noise involved, the
simulated pumping rate has a reasonable identification comparing with the actual value.

While the weights in the objective function are important and relative with the simu-
lated concentration using the actual source fluxes, we give the comparisons of performed
evaluations with different weights. The numerical results are shown with different η in
Tables 9-10. We can see that the good simulation results are based on a certain order of
magnitude of η.
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Table 7: Numerical Results of pumping rate and injection rate with source location ats p1 =0.5, s1 =0.2, and
s2 =0.6, the observation locations at o1 =0.1and o2 =0.8.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q∗1 2.0 1.999949 2.022508 2.0252894
q1 0.2 0.2 0.1999453 0.2000317
q2 0.4 0.3999996 0.3999298 0.4003350

Table 8: Numerical results of pumping rate and injection rate with source locations at p1 = 0.5, s1 = 0.2 and
s2 =0.6, the observation locations at o1 =0.1 and o2 =0.8.

actual rate optimized identified rate
ξ=0 ξ=0.005 ξ=0.01

q∗1 20.0 19.99995 20.11325 20.50563
q1 11.0 11.00000 11.00486 11.00397
q2 17.0 17.00000 16.99973 17.01842

Table 9: Comparison for results of pumping rate and injection rates with noise level ξ=0.005 and with different
η.

actual rate optimized identified rate
η=10−7 η=10−6 η=10−5

q∗1 2.0 2.099947 2.022508 2.100008
q1 0.2 0.1999494 0.1999453 0.1999785
q2 0.4 0.4001339 0.3999298 0.4002180
minimum objective 0.1454428E-02 0.1380294E-02 0.1421481E-02

Table 10: Comparison for results of pumping rate and injection rate with noise level ξ=0.005 and different η.

actual rate optimized identified rate
η=10−5 η=10−4 η=10−3

q∗1 20.0 20.16759 20.11325 20.01635
q1 11.0 10.99613 11.00486 10.99395
q2 17.0 17.00539 16.99973 16.99404
minimum objective 0.1440363E-02 0.1412140E-02 0.1438028E-02

5.4 Experment 4

We consider the pollution process that the source intensity is time dependent as

q(t)=
4

∑
k=1

αke−βk(t−tk)
2
, 0≤ t<1,

at different time intervals, where the configuration coefficients are α1=12, α2=17, α3=10,
α4=5, β1=120, β2=80, β3=180, β4=120, t1=0.2, t2=0.5, t3=0.7, t4=0.9. The problem
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Figure 2: Results of injection rate with source location at s= 0.5, the observation locations at o1 = 0.4 and
o2 =0.6, and with noise level ξ=0.
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Figure 3: Results of injection rate with source location at s = 0.5, the observation location at o1 = 0.4 and
o2 =0.6, and with noise level ξ=0.005.

is with D=0.5, v=3.5 and R=0.145, and L=1, T=1.2, T∗=1.0. The initial condition that
we take here is c0(x)=0.

The location of the pollution source point is at s=0.5, and the observation points are
at o1=0.4 and o2=0.6. In the numerical computation, we take the space and time step as
dx=dt=0.01. The comparisons of the numerical injection rates that obtained by solving
the optimized identification model and actual injection rates are shown in Figs. 2-4. The
results demonstrate that the simulated values are in an excellent agreement with actual
values.



Y. J. Yuan and D. Liang / Adv. Appl. Math. Mech., 13 (2021), pp. 1-17 15

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

time(10d−2)

p
(t

)

 

 
optimal intensity 

actual intensity

Figure 4: Results of injection rate with source location at s= 0.5, the observation locations at o1 = 0.4 and
o2 =0.6, and with noise level ξ=0.01.

6 Conclusions

In this paper, we considered an optimization problem of identifying the point source
detection in a watershed. The point source intensities were studied based on the observed
values at observation points. We developed a linked simulation-optimization model with
the DE optimization algorithm for the problems.

We first showed that the improved/upwind finite difference scheme is better for con-
vection dominated diffusion problem than the central finite difference scheme. We then
took the source injection rates as constants in two examples of optimization problems of
identifying the point source detection, while the second one with a pumping point. We
further tested the examples with one pollution point and time dependent rate q(t) as the
source intensity. We compared the simulation results with actual values for different ob-
servation data by giving different perturbation. The comparisons of different weights in
the objective function were also studied.

Because of the advantages of the DE algorithm, the linked optimized identification
model can be applied to solve other more sophisticated problems in groundwater. We can
also adopt other more efficient numerical algorithm to solve two-dimensional problems
as a future work.
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