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Abstract. This paper illustrates the efficacy of using accelerated gradient descent
schemes for minimizing a uniaxially constrained Landau-de Gennes model for ne-
matic liquid crystals. Three (alternating direction) minimization schemes are applied
to a structure preserving finite element discretization of the uniaxial model: a standard
gradient descent method, the “heavy-ball” method, and Nesterov’s method. The per-
formance of the schemes is measured in terms of the number of iterations required to
obtain the equilibrium state, as well as the total computational time (wall time).

The numerical experiments clearly show that the accelerated gradient descent
schemes reduce the number of iterations and computational time significantly, despite
the hard uniaxial constraint that is not “smooth” when defects are present. Moreover,
our results show that accelerated schemes are not hindered when combined with an
alternating direction minimization algorithm and are easy to implement.
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1 Introduction

Liquid crystals (LCs) are important in many emerging technologies [17,28]. They are eas-
ily actuated by optical effects [8, 15, 20, 23, 57], electric/magnetic [2, 10, 51], and mechan-
ical forces [7, 18, 50, 69], which has yielded various devices, e.g., electronic shutters [22],
novel types of lasers [14, 24], dynamic shape control of elastic bodies [11, 62], and oth-
ers [31, 37, 58, 61, 63].

LC models use an order parameter that represents the statistical average of the ori-
entation of the LC molecules [59]. The Landau-de Gennes (LdG) model is popular and
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uses a tensor-valued function Q to model the orientational state of the LC material. In par-
ticular, the eigenframe of Q yields information about the distribution of LC molecules.
Moreover, the energy functional (of Q) for the LC material involves an elastic contribu-
tion and a bulk potential. Equilibrium LC states are minimizers of the energy functional.

This paper is concerned with a specific variant of the LdG model where uniaxiality
is enforced as a hard constraint (see Section 3). When defects are present, i.e., when the
order parameter Q vanishes, this constraint is not smooth, which makes using standard
second order methods difficult (e.g., a monolithic Newton method). Of course, standard
gradient descent methods can be used and are robust, but can be extremely slow to con-
verge to a minimizer. Therefore, we investigate alternative methods for minimizing the
energy functional, so-called accelerated gradient descent methods, e.g., the “heavy-ball”
method [47] and Nesterov’s method [40]. Our numerical experiments clearly show that
both the heavy-ball method and Nesterov method are significantly better than standard
gradient descent, despite the presence of the non-smooth uniaxial constraint.

Although many numerical methods and implementations exist for the standard LdG
model, e.g., [5, 6, 9, 16, 30, 49, 66, 67], to the best of our knowledge, accelerated gradient
methods for LC simulations, in general, are not typically used. There are, of course,
examples of accelerated methods used for other types of PDEs. For example, in [25],
they consider a phase field crystal model. In that work, they establish various analytical
results, including convergence guarantees for their accelerated method. However, the
model we consider has an elliptic degeneracy (see Remark 3.2, as well as [9,44]), which is a
major analytical difficulty that does not appear in the model considered by [25]. Indeed,
it is not clear how to derive a convergence guarantee that accounts for the elliptic degen-
eracy and the associated non-smooth constraint. Our main contribution is to demonstrate
that well-known acceleration techniques are still effective in speeding up convergence to
a minimizer for energy functionals that are degenerate with non-smooth constraints.

This paper is organized as follows. A review of the Landau-de Gennes model us-
ing the one constant version is presented in Section 2. The Landau-de Gennes model
is reduced to the uniaxially constrained model in Section 3. A high level description of
the minimization schemes is reviewed in Section 4, and then applied to minimizing the
Landau-de Gennes energy in Section 5. Numerical experiments are conducted in Section
6 to illustrate the performance of the minimization schemes. We close with some remarks
in Section 7.

2 The Landau-de Gennes model

We briefly review the Landau-de Gennes model [17, 55]. Let Ω⊂Rd, with d=2,3, be the
domain of the LC material (assume Ω is Lipschitz). The order parameter Q is a tensor-
valued function Q : Ω→Λ, where

Λ :={A∈Rd×d|A=AT, tr(A)=0}. (2.1)
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The “one-constant” energy functional for Q is

ELdG[Q] :=
1
2

ˆ
Ω
|∇Q|2dx+

1
ε2

dw

ˆ
Ω

ψLdG(Q)dx, (2.2)

where εdw > 0 is a material parameter (nematic correlation length-scale), and ψLdG is a
“bulk” (thermotropic) potential.

Note:
|∇Q|2=∑

i,j,k
(∂kQij)

2.

More complicated models can also be considered [17, 36, 55].
The bulk potential ψLdG is a double-well type of function that captures the nematic to

isotropic phase transition of nematic LCs. Mathematically, it tries to confine the eigenval-
ues of Q to the physically meaningful range λi∈ [−1/d,1−1/d], where the simplest form
is given by

ψLdG(Q)=K+
A
2

tr(Q2)− B
3

tr(Q3)+
C
4
(
tr(Q2)

)2≥0, (2.3)

where A, B, C are material parameters such that A may be positive or negative, and B,
C are positive; K is a convenient constant. Critical points of ψLdG are either isotropic or
uniaxial Q-tensors [33]; indeed, A≤ 0 and B,C > 0 favors uniaxial states over isotropic
states. Note: in two dimensions, tr(Q3)=0, because Q2= s2

4 I. Hence, B is irrelevant when
d=2.

One seeks to minimize (2.2) over Q in H1(Ω;Λ) with suitable boundary conditions,
e.g., Dirichlet. When d = 3, a simple argument [55] shows that minimizers of Q 7→´

Ω ψLdG(Q) have a uniaxial form, i.e.,

Q= s
(

n⊗n− 1
3

I
)

, (2.4)

where n∈S2 and s∈ [−1/2,1]. However, general minimizers of (2.2) are not necessarily
uniaxial; they are typically biaxial [29, 46, 54]:

Q=−s1

(
n1⊗n1−

1
3

I
)
−s2

(
n2⊗n2−

1
3

I
)

, (2.5)

where n1,n2∈S2, n1·n2=0, and s1=−2λ1−λ2, s2=−λ1−2λ2. Note: when d=2, Q always
has the form

Q= s
(

n⊗n− 1
2

I
)

.

But this brings up a modeling issue. Some types of LCs do exhibit biaxiality [19], such
as lyotropic LCs (see [65]). But thermotropic LCs do not typically exhibit a biaxial phase
in experiments; Indeed, a biaxial phase was only first reported in [1, 32, 48]. Therefore,
it is plausible that uniaxiality should be an inherent part of the model for some types
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of LC systems. In this paper, we consider the LdG model with uniaxiality enforced as
a hard constraint (see Section 3). The main contribution here is to describe alternative
minimization schemes to compute energy minimizers with such a non-smooth constraint
(see Section 4).

3 The uniaxially constrained Q-model

This section describes the mathematical formulation of the minimization problem for
the one-constant Landau-deGennes energy ELdG under the uniaxiality constraint (2.4)
(Section 3.1). The model we obtain has similarities with the Ericksen model [9,43–45], but
it has the advantage of allowing for non-orientable minimizers that exhibit half-integer
order defects. This model is mainly of interest when d=3, since when d=2, Q necessarily
has the form of a uniaxial tensor. A small advantage of this approach is that it yields a
model with fewer variables; the standard LdG model involves a non-linear system with
five coupled variables in 3-D [30, 49, 66, 68]. In addition, the uniaxial model provides a
way to easily control the eigenvalues of Q, which the standard model does not. For more
information on the uniaxial model and discretization (Section 3.2), see [9].

Remark 3.1. Uniaxial models arise in a small elastic constant limit. In [34], the one-
constant model is studied (2.2) with a small bulk coefficient εdw (which is equivalent to a
small elastic constant). Under suitable boundary conditions, in the limit εdw→0, Landau-
de Gennes minimizers converge to minimizers of the Oseen-Frank energy. The analysis
in [34] is refined in [41], where the dependence of the difference between the solution to
both models with respect to εdw is analyzed.

3.1 Theoretical background

For a uniaxially constrained Q-tensor as in (2.4), set Θ=n⊗n and minimize (2.2) with
respect to s and Θ. Define the space

Ld−1={A∈Rd×d : there exists n∈Sd−1, A=n⊗n}, (3.1)

which is isomorphic to the real projective space RPd−1 by the map n⊗n 7−→ {n,−n}.
So the uniaxially constrained LdG model accounts for the molecular direction (i.e., a line
segment) but not the orientation (i.e., a vector).

Since

∇Q=∇s⊗
(

Θ− 1
d

I
)
+s∇Θ,

we get

|∇Q|2= |∇s|2
∣∣∣∣Θ− 1

d
I
∣∣∣∣2+s2|∇Θ|2+2s

[
∇s⊗

(
Θ− 1

d
I
)]

:∇Θ.
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A simple calculation gives∣∣∣∣Θ− 1
d

I
∣∣∣∣2= d−1

d
and

[
∇s⊗

(
Θ− 1

d
I
)]

:∇Θ=0,

so that
|∇Q|2= d−1

d
|∇s|2+s2|∇Θ|2. (3.2)

Note the following straightforward equalities:

for d=2: (1/2)s2= tr(Q2), 0= tr(Q3), (1/4)s4=(tr(Q2))2, (3.3a)

for d=3: (2/3)s2= tr(Q2), (2/9)s3= tr(Q3), (4/9)s4=(tr(Q2))2. (3.3b)

Therefore, the one-constant energy for the uniaxially constrained Q-tensor model is ob-
tained by plugging (3.2) into (2.2) to get

ELdG[Q]=Euni[s,Θ] :=Euni−m[s,Θ]+ELdG,bulk[s], (3.4a)

Euni−m[s,Θ] :=
1
2

(
d−1

d

ˆ
Ω
|∇s|2dx+ E̊uni[s,Θ]

)
, (3.4b)

E̊uni[s,Θ] :=
ˆ

Ω
s2|∇Θ|2dx, ELdG,bulk[s] :=

1
ε2

dw

ˆ
Ω

ψLdG(s)dx, (3.4c)

where, with some abuse of notation, we write

ψLdG(s) :=ψLdG(Q).

Remark 3.2. The functional E̊uni[s,Θ] has the integrand s2|∇Θ|2, which is elliptic degener-
ate because s may vanish. This is a direct consequence of enforcing the uniaxial constraint
(2.4) (see [9]).

The admissible class for minimization becomes more clear upon using the following
change of variable U= sΘ and rewrite

Euni−m[s,Θ]= Ẽuni−m[s,U] :=
1
2

(
−1

d

ˆ
Ω
|∇s|2dx+

ˆ
Ω
|∇U|2dx

)
. (3.5)

Since the degree of orientation s needs to satisfy s∈ [− 1
d−1 ,1], we define the admissible

class as

Auni :={(s,Θ)∈H1(Ω)×[L∞(Ω)]d×d : (s,U,Θ) satisfies (3.7), with U∈ [H1(Ω)]d}, (3.6)

with the structural condition

− 1
d−1

≤ s≤1, U= sΘ, Θ∈Ld−1 a.e. in Ω. (3.7)
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In order to enforce boundary conditions on (s,Θ), on different parts of the boundary, we
introduce auxiliary functions g :Ω→(− 1

d−1 ,1) and M :Ω→Ld−1 and define the restricted
admissible class

Auni(g,M) :={(s,Θ)∈Auni : s|Γs = g, Θ|ΓΘ
=M}, (3.8)

where Γs and ΓΘ are open subsets of ∂Ω on which to enforce Dirichlet conditions for s
and Θ (respectively).

See [9] for more details on the function spaces and theoretical details. In this paper,
we are only concerned with the minimization scheme for the discrete problem (Section
4).

3.2 Discretization

We discretize Ω⊂Rd with a conforming simplicial shape-regular triangulation Th ={Ti}
(ignoring any geometric error caused by domain approximation), with nodes (vertices)
Nh. Moreover, we make the following critical assumption with regard to our finite ele-
ment scheme.

Assumption 3.1. We assume throughout that the simplicial mesh Th is weakly-acute in
the sense of [4, 13, 26, 27, 56]. This is necessary because of the form of our discrete energy
(3.13).

Next, define continuous linear Lagrange finite element spaces on Ω, i.e., let sh in Sh,
and Θh in Th, be the finite element approximations of s and Θ, where

Sh :={zh∈H1(Ω) : zh|T∈P1(T), ∀T∈Th}, (3.9a)

Uh :={Uh∈ [H1(Ω)]d×d :Uh|T∈P1(T), ∀T∈Th}, (3.9b)

Th :={Θh∈Uh : Θh(xi)∈Ld−1, ∀xi∈Nh}, (3.9c)

where Th imposes the rank-one, unit norm constraint only at the vertices of the mesh.
Dirichlet boundary conditions are included via the following discrete spaces:

Sh(Γs,gh) :={sh∈Sh : sh|Γs = gh}, Th(ΓΘ,Mh) :={Θh∈Th : Θh|ΓΘ
=Mh}, (3.10)

where gh := Ihg and Mh := IhM are the discrete Dirichlet data. This yields the discrete
admissible class with boundary conditions:

Ah
uni(gh,Mh) :=

{
(sh,Θh)∈Sh(Γs,gh)×Th(ΓΘ,Mh) : (sh,Uh,Θn) satisfies (3.12)

}
, (3.11)

where

Uh = Ih(shΘh)∈Uh, − 1
d−1

≤ sh≤1 in Ω, and Θh(xi)∈Ld−1, ∀xi∈Nh, (3.12)
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is called the discrete structural condition of Ah
uni.

The discrete version of Euni−m[s,Θ] is derived in [9]. We set δijsh :=sh(xi)−sh(xj), and
δijΘh :=Θh(xi)−Θh(xj) for xi,xj∈Nh, and define the main part of the discrete energy to
be

Eh
uni−m[sh,Θh] :=

d−1
4d

n

∑
i,j=1

kij
(
δijsh

)2
+

1
4

n

∑
i,j=1

kij

(
sh(xi)

2+sh(xj)
2

2

)
|δijΘh|2, (3.13)

where, because of Assumption 3.1, there holds

kij :=−
ˆ

Ω
∇φi ·∇φjdx≥0 for all i 6= j, (3.14)

where φi is the standard “hat” function associated with node xi ∈Nh. The first term in
(3.13) corresponds to

1
2

n

∑
i,j=1

kij
(
δijsh

)2
=

ˆ
Ω
|∇sh|2dx,

while the second term is a first order approximation of 1
2

´
Ω s2|∇Θ|2dx. For convenience,

we shall denote

E̊h
uni[sh,Θh] :=

1
2

n

∑
i,j=1

kij

(
sh(xi)

2+sh(xj)
2

2

)
|δijΘh|2. (3.15)

The bulk energy is discretized in the obvious way:

Eh
LdG,bulk[sh] :=

1
ε2

dw

ˆ
Ω

ψLdG(sh)dx. (3.16)

With the notation introduced above, the formulation of the discrete problem reads as fol-
lows. Find (sh,Θh)∈Sh(Γs,gh)×Th(ΓΘ,Mh) such that the following energy is minimized:

Eh
uni[sh,Θh] :=Eh

uni−m[sh,Θh]+Eh
LdG,bulk[sh]. (3.17)

The Γ-convergence of this discrete energy was shown in [9].

4 Review of gradient based minimization schemes

We give a general discussion of gradient descent and accelerated gradient descent meth-
ods. We apply these schemes to the uniaxial Q-model in Section 5. Our numerical ex-
periments in Section 6 will show that both the heavy-ball method and Nesterov method
perform significantly faster than the more standard approach in [9], especially when cou-
pled with an exact line-search.
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4.1 Classical gradient descent

Let X be a Banach space and f : X→R a differentiable function that is bounded below, so
has a minimizer. Given the current guess xk, the simplest form of gradient descent is to first
compute a descent direction pk: a(pk,v)=−δ f [xk](v), for all v∈X, where a(·,·):X×X→R

is some appropriate, coercive bilinear form that is an inner product on X. Then, update
the guess: xk+1 := xk+αpk, for some step size α>0. This procedure is iterated until some
convergence criteria is achieved, such as

‖δ f [xk]‖X∗< εtol

for some tolerance εtol>0.
Choosing α appropriately, or using a line-search [42], yields a robust method but is

usually quite slow to converge. The form of f can force the step size to be very small in
order to ensure decrease of f , which is the case for the energy functional in (3.17). The
standard approach can be improved by choosing a(·,·) so that it is “matched” to δ f , or by
making the descent solve “more implicit.” The later approach is motivated by minimizing
movements [35], and is described more in the next section.

4.2 Accelerated gradient descent

Algorithm 4.1 describes the minimizing movements strategy for gradient descent. It also
includes a “momentum” term, known as the “heavy-ball” method (see [47] for the origi-
nal method).

Setting β=0, since pk minimizes Gk[·], choosing α=1, we see that

f [xk+1]= f [xk+pk]< (1/2)‖pk‖2
a+ f [xk+pk]=Gk[pk]≤Gk[0]= f [xk],

i.e., each step is guaranteed to decrease the functional. Choosing γ>0 sufficiently small
ensures that Gk[·] is convex.

If β > 0, then this adds a bias term that influences the current search direction to
follow the old search direction (i.e., an inertial term). It has been demonstrated, both
theoretically and in practice, that the heavy-ball method can alleviate the “zig-zagging”
behavior of classical gradient descent [47]. Of course, if β>0, then strict decrease of the
function is not guaranteed, unless a line-search is used.

Another accelerated gradient descent method is the well-known Nesterov method [40]
(see Algorithm 4.2). One can think of this method as a more optimized version of the
heavy-ball method.

5 Accelerated descent schemes for the uniaxial Q-model

The energy functional Eh
uni[sh,Θh] in (3.17) is non-convex. However, fixing either of the

variables, and linearizing with respect to the other variable, yields a simple quadratic
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Algorithm 4.1 Minimizing movement gradient descent with momentum term.
Set a tolerance εtol>0, initial guess x0∈X, and set k :=0; choose γ>0 and β≥0.
For k≥0, do the following:

1. Define the auxiliary function

Gk[p] :=(1/2)‖p‖2
a+γ f [xk+p]−βa(pk−1,p).

2. Compute search direction. Let pk∈X be the minimizer of Gk[·], i.e., pk∈X solves
the following variational problem

a(pk,v)=−γδ f [xk+pk](v)+βa(pk−1,v) for all v∈X, (4.1)

where a(·,·) : X×X→R is a chosen bilinear form (i.e., inner product) on X. This
yields a descent direction pk.

3. Update: xk+1 := xk+αpk, for some step size α>0. Replace k← k+1.

4. If | f [xk+1]− f [xk]|< εtol, then stop; else, return to Step 1.

Algorithm 4.2 Nesterov’s gradient descent.
Set a tolerance εtol>0, initial guess x0∈X, x−1 := x0, a−1 :=1, and set k :=0; choose γ>0.
For k≥0, do the following:

1. Compute auxiliary point. Let ak =(1+
√

4a2
k−1+1)/2, and set ζk =(ak−1−1)/ak.

Then, compute yk = xk+ζk(xk−xk−1).

2. Compute search direction. Let pk∈X solve the following variational problem

a(pk,v)=−γδ f [yk+pk](v) for all v∈X, (4.2)

where a(·,·) : X×X→R is a chosen bilinear form (i.e., inner product) on X. This
yields a descent direction pk.

3. Update: xk+1 :=yk+αpk, for some step size α>0. Replace k← k+1.

4. If | f [xk+1]− f [xk]|< εtol, then stop; else, return to Step 1.

minimization to solve. Therefore, we use an alternating direction method to find mini-
mizers of Eh

uni[sh,Θh].
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5.1 Tangential variations

Any minimization strategy must account for the constraint Θh(xi)∈ Ld−1 for all xi∈Nh,
in (3.12). We do this by computing variational derivatives that preserve the constraint to
first order, i.e., we take variations tangential to the constraint manifold. Since Θ∈Ld−1 is
characterized by Θ=n⊗n, we first do a Taylor expansion of n/|n| in the direction of v,
where v·n=0 [59], i.e.,

f(v) :=
n+v
|n+v| ⇒ f(v)=n+v− 1

2
|v|2n+o(|v|2). (5.1)

The first variation of n∈Sd−1, in the direction v, is then

δn(v) :=
d
dε

f(εv)
∣∣∣
ε=0

=v∈TnSd−1

(the tangent space of Sd−1 at n). Expanding (n/|n|)⊗(n/|n|) we get

n+v
|n+v| ⊗

n+v
|n+v| =

(
1− 1

2
|v|2

)2

n⊗n+n⊗v+v⊗n+v⊗v+o(|v|2), (5.2)

and the first variation of Θ∈Ld−1, in the direction v, is

δΘ(v)=n⊗v+v⊗n∈TΘLd−1

(the tangent space of Ld−1 at Θ). Thus, at Θ=n⊗n, there is a bijection between TΘLd−1

and TnSd−1 [9].
Therefore, let us introduce the space of continuous, piecewise linear, vector-valued

functions
Vh ={vh∈ [H1(Ω)]d :vh|T∈P1(T), ∀T∈Th},

and define the space of (discrete) tangential variations of Θh =nh⊗nh by

W⊥
h (nh)={vh∈Vh :vh(xi)·nh(xi)=0 for all xi∈Nh}, (5.3a)

W⊥
h (Θh)={Wh∈Uh :Wh(xi)=nh(xi)⊗vh(xi)+vh(xi)⊗nh(xi),

where vh∈W⊥
h (nh)}. (5.3b)

5.2 Discrete variational derivatives

Given k≥0, let (sk
h,Θk

h)∈Ah
uni(gh,Mh) and we write

sk
i := sk

h(xi), Θk
i :=Θk

h(xi), nk
i :=nk

h(xi), zi := zh(xi), vi :=vh(xi).
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The discrete variational derivatives of the energy are given by

δΘEh
uni[s

k
h,Θk

h](Wh)=
1
2

δΘE̊h
uni[s

k
h,Θk

h](Wh), (5.4a)

δΘE̊h
uni[s

k
h,Θk

h](Wh)=
N

∑
i,j=1

kij

(
(sk

i )
2+(sk

j )
2

2

)
(δijΘ

k
h) : (δijWh), (5.4b)

for all Wh∈W⊥
h (Θh), and

δsEh
uni[s

k
h,Θk

h](zh)=
d−1

d
(∇sk

h,∇zh)+
1
2

δsE̊h
uni[s

k
h,Θk

h](zh)+
1

ε2
dw

(ψ′LdG(s
k
h),zh), (5.5a)

δsE̊h
uni[s

k
h,Θk

h](zh)=
N

∑
i,j=1

kij|δijΘ
k
h|2
(

sk
i zi+sk

j zj

2

)
, (5.5b)

for all zh ∈ Sh. Note that δΘE̊h
uni[s

k
h,Θk

h](Wh) is linear with respect to Θk
h and Wh (sep-

arately), and δsE̊h
uni[s

k
h,Θk

h](zh) is linear with respect to sk
h and zh (separately). As will

become clear in the next section, alternating the update of sh and Θh yields a convex
problem to solve at each step, combined with a simple projection.

5.3 Minimization algorithms

The minimization schemes consist of an outer loop within which three stages are per-
formed. The first stage updates Θh using one (accelerated) gradient descent step. The
second stage projects Θh onto the admissible set Ah

uni(gh,Mh) to enforce the constraint
Θh(xi)=nh(xi)⊗nh(xi) at the nodes of the mesh. The third stage updates sh using one
(accelerated) gradient descent step.

The inner products we use for computing descent directions are as follows. Given a
function ω∈L∞(Ω) with ω≥0, define the weighted space H1

ω(Ω) through the norm

‖v‖H1
ω(Ω) :=

(ˆ
Ω
|v(x)|2dx+

ˆ
Ω
|∇v(x)|2ω(x)dx

)1/2

,

and write (·,·)H1
ω(Ω) as its inner product. When updating nh (equivalently, Θh), we define

ak
n(t,v) = (t,v)H1

ωk (Ω), with weight ωk = (sk
h)

2. For updating sh, we choose as (·,·) = (·,·),
the L2(Ω) inner product.

In order to obtain a linear system when updating sh, we use the following convex
splitting technique for ψLdG [52,53,64]. From (2.3) and (3.3), ψLdG has the form ψLdG(s)=
K+b2s2−b3s3+b4s4, where b2≤0, and b3,b4>0. Thus, writing

ψLdG(s)=
[
K+Ds2]−[(D−b2)s2+b3s3−b4s4

]
=: ψc(s)−ψe(s),
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we have that ψc,ψe are convex for all s∈ [− 1
d−1 ,1] provided D > 0 is large enough. We

then use the following approximation when computing a descent direction:(
ψ′LdG(s

k
h+rk

h),zh

)
:=
(

ψ′c(r
k
h),zh

)
+
(

ψ′c(s
k
h)−ψ′e(s

k
h),zh

)
, (5.6)

where the first term on the right is linear in rk
h. The general scheme we consider is given

in Algorithm 5.1.
The standard method in Algorithm 5.1 is equivalent to the method in [9] with γ= δt

(time-step), βn = βs =0, ζk
n = ζk

s =0 for all k≥0, and αn = αs =1. The resulting algorithm
is monotonically energy decreasing [9, Theorem 2], if δt<Chd/2 for some constant C>0,
i.e.,

Eh
uni[s

N
h ,ΘN

h ]+
1
δt

(
N−1

∑
k=0
‖tk

h‖2
H1
(sk

h)
2 (Ω)

+‖rk
h‖2

L2(Ω)

)
≤Eh

uni[s
0
h,Θ0

h], ∀N≥1.

The reason for the time step restriction is due to the “second order inconsistency” in
updating Θk

h in (5.7). In other words, setting Θ̃k+1
h :=Θk

h+Tk
h, it is clear that Θ̃k+1

h (xi) 6=
a⊗a∈Ld−1 for any a∈Sd−1 and any node xi∈Nh. According to (5.2), a better option would
be to replace Θk

h+Tk
h with

nk
h⊗nk

h+nk
h⊗tk

h+tk
h⊗nk

h+tk
h⊗tk

h≡
(

nk
h+tk

h

)
⊗
(

nk
h+tk

h

)
, (5.11)

in (5.7), but (5.11) is nonlinear. In Section 5.4, we show that (5.11) can be accounted for by
an exact line search with negligible computational cost.

5.4 Energy decrease and exact line search

Setting a fixed step size for αn is simple, but does not guarantee decrease of the energy
at each iteration because of the second-order inconsistency mentioned above. Hence, we
propose an exact line search. Because of the simple form of E̊h

uni[s
k
h,Θk

h], we have that

`n(ξ)= E̊h
uni

[
sk

h,Ih

{(
nk

h+ξtk
h

)
⊗
(

nk
h+ξtk

h

)}]
, (5.12)

is a quartic polynomial in ξ. So given sk
h, nk

h, tk
h, we can recover `n(ξ) by sampling at five

points. It is then a trivial computation to find the value of ξ that minimizes `n(ξ). Since
E̊h

uni[s
k
h,Θk

h] is convex in Θk
h (for fixed sk

h), we are guaranteed to find a positive ξ value that
minimizes `n, unless E̊h

uni[s
k
h,nk

h⊗nk
h] is already a minimum; note that(

nk
h+tk

h

)
⊗
(

nk
h+tk

h

)
≈Θk

h+Tk
h,

for |tk
h| sufficiently small and Θk

h+Tk
h is linear in tk

h. Thus, using an exact line search on
αn>0 gives

E̊h
uni

[
sk

h,Ih

{(
nk

h+αntk
h

)
⊗
(

nk
h+αntk

h

)}]
< E̊h

uni

[
sk

h,Ih

{
nk

h⊗nk
h

}]
,
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Algorithm 5.1 General alternating direction method for Eh
uni[sh,Θh] using heavy-ball or

Nesterov acceleration.

Set a tolerance εtol >0 and initial guess (s0
h,Θ0

h)∈A
h
uni(gh,Mh), with Θ0

h = Ih
{

n0
h⊗n0

h
}

.
Set t−1

h =0, r−1
h =0, n−1

h =n0
h, s−1

h = s0
h, and set k :=0; choose γn,γs >0.

For the standard method: set βn =βs =0 and ζk
n = ζk

s =0 for all k≥0;
for the heavy-ball method: choose βn,βs >0 and set ζk

n = ζk
s =0 for all k≥0;

for the Nesterov method: set βn =βs =0 and update ζk
n,ζk

s >0 at each iteration using the scheme in
Algorithm 4.2.
For k≥0, do the following:

1. Tangential search direction for nk
h. Compute n̆k

h =nk
h+ζk

n(nk
h−nk−1

h ); set Θ̆k
h =Ih

{
n̆k

h⊗n̆k
h

}
∈Uh.

Find tk
h∈W⊥

h (nk
h)∩H1

ΓΘ
(Ω) and Tk

h =nk
h⊗tk

h+tk
h⊗nk

h∈W⊥
h (Θk

h), such that

ak
n

(
tk
h,vh

)
=−γnδΘ E̊h

uni[s
k
h,Θ̆k

h+Tk
h](Vh)+βnak

n

(
tk−1
h ,vh

)
,

∀Vh =nk
h⊗vh+vh⊗nk

h, vh∈W⊥
h (nk

h)∩H1
ΓΘ

(Ω). (5.7)

2. Update nk
h. Let ñk+1

h ∈Vh with ñk+1
h := n̆k

h+αntk
h, where αn >0 is the step size (either chosen

arbitrarily or found by an exact line-search).

3. Update Θk
h by projection. Compute Θk+1

h ∈Th(ΓΘ,Mh) with

Θk+1
h (xi) :=

ñk+1
h (xi)

|ñk+1
h (xi)|

⊗
ñk+1

h (xi)

|ñk+1
h (xi)|

, ∀xi∈Nh. (5.8)

4. Search direction for sk
h. Compute s̆k

h = sk
h+ζk

s (sk
h−sk−1

h ). Find rk
h∈Sh(Γs,0) such that, for all

zh∈Sh(Γs,0),

as

(
rk

h,zh

)
=−γsδsEh

uni[s̆
k
h+rk

h,Θk+1
h ](zh)+βsas

(
rk−1

h ,zh

)
, (5.9)

or, more explictly,

as

(
rk

h,zh

)
+γsδsEh

uni−m[rk
h,Θk+1

h ](zh)+
γs

ε2
dw

(
ψ′c(r

k
h),zh

)
=−γsδsEh

uni−m[s̆k
h,Θk+1

h ](zh)−
γs

ε2
dw

(
ψ′LdG(s̆

k
h),zh

)
+βsas

(
rk−1

h ,zh

)
. (5.10)

5. Update sk
h. Let sk+1

h ∈Sh(Γs,gh) with sk+1
h := s̆k

h+αsrk
h, where αs >0 is the step size (either chosen

arbitrarily or found by an exact line-search).

6. If ∣∣∣Eh
uni[s

k+1
h ,Θk+1

h ]−Eh
uni[s

k
h,Θk

h]
∣∣∣< εtol,

then stop; else, replace k← k+1 and return to Step 1.

and furthermore, the projection in (5.8) is monotone energy decreasing [6] (because of
Assumption 3.1), so that

E̊h
uni

[
sk

h,Θk+1
h

]
≤ E̊h

uni

[
sk

h,Ih

{(
nk

h+αntk
h

)
⊗
(

nk
h+αntk

h

)}]
.
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Moreover, Eh
uni[s

k+1
h ,Θk+1

h ], also has a simple form, i.e., fixing Θk+1
h ,

`s(ξ)=Eh
uni[s

k
h+ξrk

h,Θk+1
h ] (5.13)

is a quartic polynomial in ξ because of ψLdG. Hence, we can easily do an exact line search
when updating sk

h as above. In the next section, we show the efficacy of this approach.

6 Numerical experiments

We tested the three schemes: standard method, heavy-ball method, Nesterov method
given in Algorithm 5.1, by simulating a point defect in two dimensions (Section 6.1) and
line defect in three dimensions (Section 6.3). Simulations were performed for a sequence
of values for εdw. A sequence of mesh sizes hD was also used, but only the finest mesh is
shown here (the performance trends were similar for the other mesh sizes). The stopping
criteria for all cases is ∣∣∣Eh

uni[s
k+1
h ,Θk+1

h ]−Eh
uni[s

k
h,Θk

h]
∣∣∣< εtol :=10−6.

The schemes were implemented using the MATLAB/C++ finite element toolbox FE-
LICITY [60]. In the 3-D simulations, the linear system solves were done using the alge-
braic multi-grid solver-AGMG [38,39]. The computations were carried out on a Dell XPS
desktop, 6 core Intel i7 3.20GHz with 64GB RAM.

6.1 Experiment 1: point defect in 2D

6.1.1 Simulation statistics

For the uniaxially constrained LdG model, we use the following double well potential
ψLdG(s):

ψLdG(s)=ψc(s)−ψe(s)=1−8.16325s2+33.31945s4, (6.1)

such that

ψc(s)=K+
(A+D)

2
s2+

C
4

s4 and ψe(s)=
D
2

s2−C
4

s4

with A=−16.3265, C= 66.6389, D= 144.040024, and K= 1.0. Note this splitting is only
convex for −1≤ s≤+1 (all simulations given here satisfy these bounds).

The Dirichlet boundary conditions imposed on the liquid crystal domain are

s= s∗=0.7 on Γs, (6.2a)

n(x,y)= [cos(θ),sin(θ)]T, θ=atan2
(

y−y0

x−x0

)
on ΓΘ, (6.2b)



E. E. Chukwuemeka and S. W. Walker / Adv. Appl. Math. Mech., 14 (2022), pp. 1-32 15

(a) Standard gradient descent algorithm (b) Nesterov accelerated gradient descent algorithm

(c) Heavy-Ball accelerated gradient descent algorithm

Figure 1: Point defect in 2D. Equilibrium solution of each algorithm without using an exact line search: for
εdw=0.1, γ=1, αn=αs=1, and hD=0.02. Line segments depict n without an arrowhead; color represents the
variable s.

where Θ = n⊗n is defined on Γs, ΓΘ = ∂Ω and [x0,y0]T = [0.5,0.5]T. The minimization
schemes were initialized with

s0= s∗=0.7, n0(x,y)= [cos(θ0),sin(θ0)]
T, θ0=atan2

(
y−y0

x−x0

)
,

[x0,y0]
T =[0.182,0.31]T, Θ0=n0⊗n0.

Fig. 1 and Fig. 2 shows the energy minimizer using the three gradient descent mini-
mization schemes without and with exact line search method, respectively. The bound-
ary conditions for Θ here correspond to a +1 degree point defect, as well as for the initial
condition. The initial +1 degree defect splits into two +1/2 defects because this more
easily reduces the elastic energy. All three schemes capture this phenomena exactly.

The energy of the minimizer using all three schemes, as a function of the liquid crystal
material property εdw, is tabulated in Table 1 and Table 2 for each minimization scheme
without exact line search and with exact line search, respectively. The relative error in the
energy of the minimizer between the minimization schemes is shown in Fig. 3 and Fig. 4
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(a) Standard gradient descent algorithm (b) Nesterov accelerated gradient descent algorithm

(c) Heavy-Ball accelerated gradient descent algorithm

Figure 2: Point defect in 2D. Equilibrium solution of each algorithm with using an exact line search: for
εdw =0.1, γ=1, and hD =0.02. Line segments depict n without an arrowhead; color represents the variable s.

Table 1: Equilibrium energy (without line search): γ=1, hD =0.02, αn=αs=1. The energy is almost constant
across each row, meaning the solution from each of the methods is essentially the same.

εdw Standard Heavy-Ball Nesterov
0.5 2.9241 2.9244 2.9255
0.4 3.2300 3.2244 3.2281
0.2 4.2571 4.2522 4.2571
0.1 5.3184 5.3122 5.3133

without and with using an exact line search, respectively.

6.1.2 Comparison of the heavy-ball and Nesterov accelerated gradient descent schemes

The performance of the accelerated gradient descent schemes - heavy-ball (HB) and Nes-
terov (NEST) - were compared to the standard gradient descent scheme [9]. The perfor-
mance of the schemes with and without an exact line search is quantitatively measured
in terms of the number of iterations and overall computational time. The implementation
of the line search is labeled with LS while without the line search is labeled with NLS.
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Figure 3: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme without using exact line search–γ=1, αn =αs =1, and hD =0.02.

Figure 4: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme with using exact line search–γ=1 and hD =0.02.

Table 2: Equilibrium energy (with line search): γ= 1, hD = 0.02. The energy is almost constant across each
row, meaning the solution from each of the methods is essentially the same.

εdw Standard Heavy-Ball Nesterov
0.5 2.9236 2.9236 2.9252
0.4 3.2281 3.2244 3.2243
0.2 4.2571 4.2335 4.2571
0.1 5.3184 5.3118 5.3122
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Figure 5: Comparison of the number of iterations required to attain the minimizer using the various minimization
schemes.

Figure 6: Comparison of the computational time required to attain the minimizer using the various minimization
schemes.

Fig. 5 shows the number of iterations needed for the computation to find a minimizer.
As shown, the Nesterov method required the fewest iterations in comparison to the other
methods (with or without line search). In fact, both accelerated schemes dramatically
reduce the number of iterations. For example, the reduction from STD-NLS to NEST-NLS
is more than a factor of 3.0. The use of an exact line search improves the performance of
all methods.

Moreover, the computational (wall) time was reduced when using the accelerated gra-
dient descent schemes; see Fig. 6 for the total computational time for all of the schemes.
For example, the reduction from STD-NLS to NEST-NLS is more than a factor of 3.0.
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Overall, NEST performed best.

6.2 Experiment 2: point defect in 2D with finer mesh and smaller εdw

6.2.1 Simulation statistics

The setup of this problem is almost exactly the same as in Section 6.1.1, except for the
following. A finer mesh was used (hD = 5×10−3), we take εdw down to 0.02, and the
initial coordinates of the degree +1, point defect are [x0,y0]T =[0.762,0.912]T.

Fig. 7 and Fig. 8 shows the energy minimizer using the three gradient descent mini-
mization schemes without and with exact line search method, respectively. The bound-
ary conditions for Θ here correspond to a +1 degree point defect, as well as for the initial
condition. The initial +1 degree defect splits into two +1/2 defects because this more
easily reduces the elastic energy. All three schemes capture this phenomena exactly. The
positioning of the defects in Fig. 7 and Fig. 8 was essentially the same for all values of
εdw we simulated. Note that the equilibrium configuration found here is different than

(a) Standard gradient descent algorithm (b) Nesterov accelerated gradient descent algorithm

(c) Heavy-Ball accelerated gradient descent algorithm

Figure 7: Point defect in 2D. Equilibrium solution of each algorithm without using an exact line search: for
εdw = 2×10−2, γ= 1, αn = αs = 1, and hD = 5×10−3. Line segments depict n without an arrowhead; color
represents the variable s. Note: the apparent “scar” in the line field plot is just a plotting artifact of Matlab’s
quiver command.
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(a) Standard gradient descent algorithm (b) Nesterov accelerated gradient descent algorithm

(c) Heavy-Ball accelerated gradient descent algorithm

Figure 8: Point defect in 2D. Equilibrium solution of each algorithm with using an exact line search: for
εdw =2×10−2, γ=1, and hD =5×10−3. Line segments depict n without an arrowhead; color represents the
variable s. Note: the apparent “scar” in the line field plot is just a plotting artifact of Matlab’s quiver command.

the one in Section 6.1.1. This is due to the fact that the energy functional Euni[s,Θ] is not
convex and we used a different initial condition for the point defect.

The energy of the minimizer using all three schemes, as a function of the liquid crystal
material property εdw, is tabulated in Table 3 and Table 4 for each minimization scheme
without exact line search and with exact line search, respectively. The relative error in
the energy of the minimizer between the minimization schemes is shown in Fig. 9 and

Table 3: Equilibrium energy (without line search): γ = 1,hD = 5×10−3, αn = αs = 1. The energy is almost
constant across each row, meaning the solution from each of the methods is essentially the same.

εdw Standard Heavy-Ball Nesterov
0.2 4.2353 4.2367 4.2387
0.1 5.3213 5.3215 5.3263

0.05 6.4362 6.4281 6.4327
0.02 8.7118 8.6976 8.6135
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Table 4: Equilibrium energy (with line search): γ=1, hD=5×10−3. The energy is almost constant across each
row, meaning the solution from each of the methods is essentially the same.

εdw Standard Heavy-Ball Nesterov
0.2 4.2314 4.2367 4.2338
0.1 5.3235 5.3223 5.3222

0.05 6.5324 6.4230 6.4303
0.02 8.6669 8.6522 8.6342

Fig. 10 without and with using an exact line search, respectively.

6.2.2 Comparison of the heavy-ball and Nesterov accelerated gradient descent
schemes

The performance of the accelerated gradient descent schemes–heavy-ball (HB) and Nes-
terov (NEST)–were compared to the standard gradient descent scheme [9]. The perfor-
mance of the schemes with and without an exact line search is quantitatively measured
in terms of the number of iterations and overall computational time. The implementation
of the line search is labeled with LS while without the line search is labeled with NLS.

Fig. 11 shows the number of iterations needed for the computation to find a mini-
mizer. As shown, the Nesterov method required the fewest iterations, for the smaller
values of εdw, in comparison to the other methods (with or without line search). In fact,
both accelerated schemes dramatically reduce the number of iterations. For example, the
reduction from STD-NLS to NEST-NLS is more than a factor of 3.0 (for smaller values of
εdw). The use of an exact line search improves the performance of all methods.

Moreover, the computational (wall) time was reduced when using the accelerated gra-

Figure 9: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme without using exact line search - γ=1, αn =αs =1, and hD =5×10−3.
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Figure 10: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme with using exact line search - γ=1 and hD =5×10−3.

Figure 11: Comparison of the number of iterations required to attain the minimizer using the various minimiza-
tion schemes.

dient descent schemes; see Fig. 12 for the total computational time for all of the schemes.
For example, the reduction from STD-NLS to NEST-NLS is more than a factor of 3.0.
Overall, NEST performed best.

6.3 Experiment 3: line defect in 3D
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Figure 12: Comparison of the computational time required to attain the minimizer using the various minimization
schemes.

6.3.1 Simulation statistics

For the uniaxially constrained LdG model, we use the following double well potential
ψLdG(s):

ψLdG(s)=ψc(s)−ψe(s)=1−3.75104s2−40.6504s3+33.259425s4, (6.3)

such that

ψc(s)=K+
(A+D)

2
s2− B

3
s3+

C
4

s4 and ψe(s)=
D
2

s2+
B
3

s3−C
4

s4

with A=−7.50208, B=60.9756, C=66.51885, D=552.22912, and K=1.0. Note this splitting
is only convex for −1/2≤ s≤+1 (all simulations given here satisfy these bounds).

The domain Ω has a hole cut out such that its center is located at (xc,yc,zc) and has a
radius Rhole. The Dirichlet boundary conditions imposed on the liquid crystal domain is

s= s∗=0.7 on Γs =∂Ω, (6.4a)

n(x,y,z)=


nbc

|nbc|
on Γhole,

[0,0,1]T on ΓΘ =∂Ω\Γhole,
(6.4b)

Θ=n⊗n is defined on Γs, ΓΘ =∂Ω, (6.4c)

where nbc = [x−xc,y−yc,z−zc]T, and [xc,yc,zc]T = [0.35355,0.35355,0]T, Rhole = 0.20011.
The minimization schemes were initialized with s0=s∗=0.7, n0(x,y)=[0,0,1]T, and Θ0=
n0⊗n0 on Ω.

Fig. 13 and Fig. 14 shows the energy minimizer using the three gradient descent min-
imization schemes without and with exact line search method, respectively. A defect
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(a) Standard gradient descent (b) Nesterov accelerated gradient descent

(c) Heavy-Ball accelerated gradient descent

Figure 13: Saturn-ring defect in 3D (vertical slice shown). Equilibrium solution of each algorithm without using
an exact line search: for εdw = 0.2, γ = 1, αn = αs = 1, and hD = 0.06. Line segments depict n without an
arrowhead; color represents the variable s. The ring defect is denoted by the s=0.25 iso-surface (light blue).

Table 5: Equilibrium energy (without line search): γ=1, hD =0.06, αn=αs=1. The energy is almost constant
across each row, meaning the solution from each of the methods is essentially the same.

εdw STD Heavy-Ball Nesterov
0.5 2.4195 2.4193 2.4195
0.4 2.5360 2.5360 2.5360
0.3 2.7016 2.7016 2.7016
0.2 2.9572 2.9572 2.9572

Table 6: Equilibrium energy (with line search): γ= 1, hD = 0.06. The energy is almost constant across each
row, meaning the solution from each of the methods is essentially the same.

εdw STD Heavy-Ball Nesterov
0.5 2.4195 2.4196 2.4195
0.4 2.5360 2.5360 2.5360
0.3 2.7016 2.7016 2.7016
0.2 2.9572 2.9572 2.9572

region in the shape of a ring around the equator of the hole develops, which is observed
in experiments [21]; see also [3]. All three schemes capture this phenomena exactly.
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(a) Standard gradient descent algorithm (b) Nesterov accelerated gradient descent algorithm

(c) Heavy-Ball accelerated gradient descent algorithm

Figure 14: Saturn-ring defect in 3D (vertical slice shown). Equilibrium solution of each algorithm with using
an exact line search: for εdw =0.2, γ=1, and hD =0.06. Line segments depict n without an arrowhead; color
represents the variable s. The ring defect is denoted by the s=0.25 iso-surface (light blue).

The energy of the minimizer using all three schemes, as a function of the liquid crystal
material property εdw, is tabulated in Table 5 and Table 6 for each minimization scheme
without exact line search and with exact line search, respectively. The relative error in
the energy of the minimizer between the minimization schemes is shown in Fig. 15 and
Fig. 16 without and with using an exact line search, respectively.

6.3.2 Comparison of the heavy-ball and Nesterov accelerated gradient descent
schemes

The performance of the accelerated gradient descent schemes–heavy-ball (HB) and Nes-
terov (NEST)–were compared to the standard gradient descent scheme [9]. The perfor-
mance of the schemes with and without an exact line search is quantitatively measured
in terms of the number of iterations and overall computational time. The implementation
of the line search is labeled with LS while without the line search is labeled with NLS.

Fig. 17 shows the number of iterations needed for the computation to find a mini-
mizer. As shown, the Nesterov method required the fewest iterations in comparison to
the other methods (with or without line search). In fact, both accelerated schemes dra-
matically reduce the number of iterations. For example, the reduction from STD-NLS
to NEST-NLS is more than a factor of 2.0. The use of an exact line search improves the
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Figure 15: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme without using exact line search–γ=1, αn =αs =1, and hD =0.06.

Figure 16: Comparison of the minimum energy for each of the accelerated gradient descent schemes with respect
to the “standard” scheme with using exact line search–γ=1 and hD =0.06.

performance of all methods.

Moreover, the computational (wall) time was reduced when using the accelerated gra-
dient descent schemes; see Fig. 18 for the total computational time for all of the schemes.
For example, the reduction from STD-NLS to NEST-NLS is about a factor of 2.5. Overall,
NEST performed best.
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Figure 17: Comparison of the number of iterations required to attain the minimizer using the various minimiza-
tion schemes.

Figure 18: Comparison of the computational time required to attain the minimizer using the various minimization
schemes.

7 Conclusions

We considered a unique model of liquid crystals that enforces a uniaxial constraint on the
Landau-de Gennes model (Section 3). Moreover, we presented numerical experiments
demonstrating that accelerated gradient descent schemes, i.e., the heavy-ball method and
Nesterov method, significantly speed up simulations for computing minimizers of this
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model when compared to a more standard gradient descent method. In addition, using
an exact line search, which is not expensive for the uniaxial model, also greatly reduces
the computational effort.

It is known, both computationally and theoretically, that the heavy-ball method and
Nesterov scheme work well for many types of optimization problems. What is surprising
here is that these schemes still work very well despite the uniaxial constraint, which
is not smooth when defects are present. It is well-known in the modeling of LCs that
defects have slow dynamics under gradient flows, especially when εdw>0 is very small.
Furthermore, the alternating direction minimization can further exacerbate the slowness
of defects, as described in [12].

On the other hand, the alternating scheme is very robust and relatively easy to im-
plement. Therefore, there are two contributions of this paper: (i) to give direct evidence
that accelerated gradient descent schemes can augment the alternating scheme and make
it more efficient, without much extra complexity in implementation; and (ii) accelerated
gradient schemes can overcome “hard” constraints, such as uniaxiality.
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