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Abstract. We develop a new conservative Allen-Cahn phase-field model for diblock
copolymers in this paper by using the Allen-Cahn type gradient flow approach for
the classical Ohta-Kawaski free energy. The change in volume fraction of two com-
posing monomers is eliminated by using a nonlocal Lagrange multiplier. Based on
the recently developed stabilized Scalar Auxiliary Variable method, we have further
developed an effective numerical scheme to solve the model. The scheme is highly ef-
ficient and only two linear and decoupled equations are needed to solve at every time
step. We then prove that the numerical method is unconditionally energy stable, the
stability and accuracy of the new scheme are demonstrated by numerous numerical
examples conducted. By qualitatively comparing the equilibrium solution obtained
by the new model and the classic Cahn-Hilliard model, we illustrate the effectiveness
of the new model.
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1 Introduction

The molecules of a block copolymer are composed of two or more segments of simple
polymers (blocks). For instance, polymers of AB-type (called diblock) mean that ev-
ery single chain is formed by a segment composed of the monomer A and a segment
with monomer B. Recently, block copolymers have attracted great interest in the field
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of science and engineering due to their highly adjustable self-assembly property in the
nanoscale. That is, the copolymer system can self-assemble into various nanostructures,
such as lamellar, cylinders, gyroids, and BCC (body-centered-cubic) phases, etc. To sim-
ulate the copolymer patterns and understand the process of formation of the copolymer
chain, the diffusive interface phase-field method had been widely used as the effective
modeling and simulation tool for this particular subject.

The basic idea of the phase-field method is to introduce a labeling function (phase-
field variable) to represent the difference between the local volume fractions of the two
constituent monomers, cf. [3, 5, 11, 16, 17, 22, 23]. For the diblock copolymer model, the
total free energy usually consists of two parts, one of which is the linear part of gradient
entropy, and the other is the nonlinear part containing the double-well potential and
the so-called Ohta-Kawasaki nonlocal potential, see the pioneering work by Ohta and
Kawaski in [17]. By using the variational method to minimize the assumed total free
energy in the assumed metric, the governing PDE model can be further derived.

We note that the phase-field variable used in the diblock copolymer model is inter-
preted as the local volume fraction of the two monomers, so it is expected to conserve
over time. Therefore, the model is generally derived using the Cahn-Hilliard dynamics
(H−1-gradient flow approach), thereby obtaining a fourth-order system. It is well-known
that there is another gradient flow approach in phase-field modeling, the so-called Allen-
Cahn dynamics (L2-gradient flow approach). Note that the PDE system generated by the
Allen-Cahn type model is second-order less than the PDE system of the Cahn-Hilliard
model, which in turn brings weaker CFL conditions for grid size in time and/or space.
Therefore, from a numerical point of view, the second-order Allen-Cahn model is prefer-
able to the fourth-order Cahn-Hilliard model.

However, the Allen-Cahn model has an inherent defect that the volume cannot usu-
ally be conserved. To fix this issue, Rubinstein and Sternberg developed a so-called con-
servative Allen-Cahn equation, in which the variance of the total volume is offset by us-
ing a nonlocal Lagrange multiplier while retaining the law of energy dissipation. Inspired
by this ingenious nonlocal technique, the first goal of this paper is to rebuild the diblock
copolymer model using the lower-order Allen-Cahn dynamics. More precisely, after ap-
plying the variational method to the classic Ohta-Kawaski free energy in the L2 space
and adding a nonlocal Lagrange multiplier to offset the volume change, we arrive at a
conservative nonlocal Allen-Cahn type PDE model for diblock copolymers. However,
when designing a reliable and effective numerical algorithm for solving the new model,
some new difficulties are encountered, especially how to discretize the newly added non-
local term. In other words, if we directly apply the known methods that can successfully
solve the local phase-field model, including simple-implicit [9], explicit [12, 13, 20, 27],
convex-splitting [1, 8], etc., to deal with the newly obtained nonlocal model, the result-
ing numerical scheme will inevitably fail to maintain unconditional energy stability, or
become a nonlinear scheme with actual high computational cost [15, 27].

Therefore, the second purpose of this article is to construct an effective numerical
scheme to solve the new conservative Allen-Cahn diblock copolymer model. To this end,
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we modify the recently developed Scalar Auxiliary Variable (SAV) approach to be the so-
called “stabilized-SAV” approach [21,24–26,28, 29], which adds a key linear stabilization
term to improve stability. The detailed implementation method is to define a scalar aux-
iliary variable first and then reformulate the PDE model accordingly. By using an inverse
linear operator, the nonlocal term eventually disappears, and we only need to solve two
linear systems with constant coefficients at each time step. The scheme is then be proved
to be unconditionally energy stable. The numerical results of the classical Cahn-Hilliard
phase-field model are compared qualitatively to simulate a large number of numerical
examples in 2D and 3D spaces, which proves the effectiveness of the new model. The
stability and accuracy of the developed scheme are also demonstrated numerically.

The rest of the article is structured as follows. In Section 2, the governing equations
of the new Allen-Cahn type system are developed and the corresponding energy law
is derived. In Section 3, the temporal second-order numerical algorithm is developed
to solve the proposed model. In Section 4, we give numerous numerical simulations to
demonstrate the accuracy and stability. We present some conclusive remarks in Section
5.

2 Model equations

Now we present the new conserved Allen-Cahn type phase-field model for diblock
copolymers. Assuming a system consists of molecules of two monomers A and B. We
introduce a scalar labeling function φ(x,t) to represent the local volume fraction of these
two components where x∈Ωd, d=2,3 and time t∈ [0,T). Hence, by using the Allen-Cahn
dynamics, i.e., the L2-gradient flow, the state of the system that relates to the time change
of φ is described by the following phenomenological mesoscopic dynamic equation

1
M

φt+
δE(φ)

δφ
=0, (2.1)

where M is a positive constant that represents the mobility of relaxation dynamics, E(φ)
is a coarse-grained free energy functional that is postulated as (cf. [2, 6, 7, 10]),

E(φ)=
∫

Ω

(ε2

2
|∇φ|2+F(φ)

)
dx+

αε2

2

∫
Ω

∫
Ω

G(x−y)(φ(x)−φ̄)(φ(y)−φ̄)dxdy, (2.2)

where ε is the gradient energy coefficient, the function F(φ)= (φ2−1)2 is the nonlinear
double-well potential that takes φ=±1 as two minima. The function φ̄(t) is defined as

φ̄(t) :=
1
|Ω|

∫
Ω

φ(x,t)dx, (2.3)

G is the Green’s function that reads as

G(x−y)=−δ(x−y), (2.4)
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with the periodic boundary condition, δ is a Dirac delta function, α is the nonlocal pos-
itive parameter to characterizes the nonlocal potential and the molecular chain length,
and the last term in (2.2) is the so-called nonlocal Ohta-Kawasaki functional.

We define the inverse Laplace operator ψ=(−∆)−1φ as −∆ψ=φ,∫
Ω

ψdx=0,
(2.5)

with some specific boundary conditions, where

φ∈L2
0(Ω) :=

{
φ∈L2(Ω) :

∫
Ω

φdx=0
}

.

By taking variational derivative of the total free energy described in (2.2), the Allen-Cahn
PDE system (2.1) turns into

1
M

φt−ε2∆φ+ f (φ)+αε2ψ=0, (2.6a)

ψ=(−∆)−1(φ−φ̄), (2.6b)

where f (φ)=F′(φ).
It is obvious that the volume fraction

∫
Ω φ(x,t)dx of the above system (2.6a)-(2.6b) is

not conservative. To fix this, a nonlocal type Lagrange multiplier is added into the system
thus volume variance caused by the nonlinear term f (φ) is eliminated thoroughly [18].
The new conservative Allen-Cahn type system reads as

1
M

φt−ε2∆φ+ f (φ)+αε2ψ− 1
|Ω|

∫
Ω

f (φ)dx=0, (2.7a)

ψ=(−∆)−1(φ−φ̄). (2.7b)

In this work, we will use the periodic boundary condition such that all complexities
caused by the boundary integrals are removed. One can also choose another alternative
boundary conditions, e.g., the no-flux type boundary conditions that read as

∂nφ|∂Ω =∂nψ|∂Ω =0, (2.8)

here, n is the outward normal of Ω. All numerical analyses derived in this paper are also
applicable to no-flux boundary conditions.

It is easy to show that the new model (2.7a)-(2.7b) conserves the volume. More pre-
cisely, we take the L2 inner product of (2.7a) with 1 to obtain the following volume con-
servation property that reads as

d
dt

∫
Ω

φ(x,t)dx=0. (2.9)
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Furthermore, the new conserved system (2.7a)-(2.7b) follows the same energy dissipation
law as the non-conserved system (2.6a)-(2.6b). First, by taking the L2 inner product of
(2.7a) with φt, and applying integration by parts, we obtain

d
dt

∫
Ω

(ε2

2
|∇φ|2+F(φ)

)
dx+αε2(ψ,φt)=−

1
M
‖φt‖2, (2.10)

where we use the volume-conserved property (2.9) to handle the nonlocal term, i.e.,(∫
Ω

f (φ)dx,φt

)
=0.

Second, to obtain (ψ,φt), we rewrite (2.6b) as the form (2.5), i.e.,

−∆ψ=φ−φ̄ with
∫

Ω
ψdx=0

and then take the time derivative for the above equation to get

−∆ψt =φt−φ̄t. (2.11)

Taking the L2 inner product of the above equation with αε2ψ, we find

d
dt

∫
Ω

αε2

2
|∇ψ|2dx=αε2(ψ,φt), (2.12)

where (φ̄t,ψ)=0 due to the zero-mean property of ψ. By combining (2.10) and (2.12), we
obtain the energy decaying law that reads as

d
dt

E(φ,ψ)=− 1
M
‖φt‖2, (2.13)

where

E(φ,ψ)=
∫

Ω

(ε2

2
|∇φ|2+F(φ)+

αε2

2
|∇ψ|2

)
dx. (2.14)

Remark 2.1. By using the H−1 gradient flow approach, the Cahn-Hilliard type phase-
field model of diblock copolymers reads as (cf. [3, 5, 11, 16, 17, 22, 23]),

φt =M∆w, (2.15a)

w=−ε2∆φ+ f (φ)+αε2ψ, (2.15b)

ψ=(−∆)−1(φ−φ̄), (2.15c)

where w is the chemical potential; or an equivalent form as

φt =M(∆µ−αε2(φ−φ̄)), (2.16a)

µ=−ε2∆φ+ f (φ). (2.16b)

The energy dissipation law followed by the Cahn-Hilliard model reads as

d
dt

E(φ,ψ)=−M‖∇w‖2. (2.17)
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3 Numerical schemes

Now we develop a temporal second-order time marching scheme by adopting the re-
cently developed stabilized-SAV approach [4, 19] where an extra crucial linear stabiliza-
tion term is added to improve the energy stability. Numerical results show that this
particular term is very efficient for stability while the large time steps are used.

First, we denote an auxiliary nonlocal variable u(t) by

u(t)=
√∫

Ω
F(φ)dx+B, (3.1)

where B be a positive constant such that
∫

Ω F(φ)dx+B is positive (in the following nu-
merical example, we fix B=1).

In terms with φ, ψ and the variable u, the total free energy (2.14) is reformulated as
the following form

E(u,φ,ψ)=
∫

Ω

(ε2

2
|∇φ|2+ αε2

2
|∇ψ|2

)
dx+u2−B. (3.2)

Then, in terms of φ, ψ and u, the PDE system (2.6a)-(2.6b) is further rewritten to be the
following,

1
M

φt−ε2∆φ+uH̄+αε2ψ=0, (3.3a)

ut =
1
2

∫
Ω

H(φ)φtdx, (3.3b)

ψ=(−∆)−1(φ−φ̄), (3.3c)

where the third equation above is obtained by taking the time derivative of u(t), and

H(φ)=
f (φ)√∫

Ω F(φ)dx+B
, H̄(φ)=H(φ)− 1

|Ω|

∫
Ω

H(φ)dx. (3.4)

The initial conditions for the new system (3.3a)-(3.3c) read as follows,

φ(t=0)=φ0, u(t=0)=
√∫

Ω
F(φ0)dx+B. (3.5)

For a given positive integer N, set tn = nδt, 0≤ n≤ N, here δt = T/N be the time step
size. For any φ(x) and ψ(x), we define the standard L2 inner product (φ(x),ψ(x)) =∫

Ω φ(x)ψ(x)dx, and norm ‖φ‖2 = (φ,φ). Let ψn be the numerical approximation to the
analytic function ψ(·,t)|t=tn .

Using the second-order backward differentiation formula (BDF2), the semi-discrete
scheme for the system (3.3a)-(3.3c) is proposed as
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Given φn, un and φn−1, un−1, we can update φn+1, un+1 via

3φn+1−4φn+φn−1

2Mδt
−ε2∆φn+1+un+1H̄∗,n+1+αε2ψn+1+S(φn+1−φ∗,n+1)=0, (3.6a)

3un+1−4un+un−1=
1
2

∫
Ω

H∗,n+1(3φn+1−4φn+φn−1)dx, (3.6b)

ψn+1=(−∆)−1(φn+1−φ̄n+1), (3.6c)

where

φ∗,n+1=2φn−φn−1, H∗,n+1=H(φ∗,n+1), (3.7a)

H̄∗,n+1=H∗,n+1− 1
|Ω|

∫
Ω

H∗,n+1dx, (3.7b)

and the term associated with S is an extra stabilization term.

Remark 3.1. The linear term S(φn+1−φ∗,n+1) is added in the scheme as an extra stabiliza-
tion term. Note this term introduces an error which is of the order Sδt2φtt(·) that is com-
parable with the error introduced by the linear extrapolation of the nonlinear function
f (φ). While adopting large time steps, it is shown by numerous examples that the stabi-
lization term is the key term to enhance the stability for high stiffness case, cf. Fig. 1 and
Fig. 2 where we give the detailed comparisons in the accuracy and stability computed by
using the stabilized SAV scheme (S 6=0 in the scheme (3.6a)-(3.6c)) and the non-stabilized
SAV (S=0 in the scheme (3.6a)-(3.6c)).

Remark 3.2. The computations of second-order time-discrete method (3.6a)-(3.6c) need
the values of φ1, u1. In practice, we obtain these two values by the following first-order
scheme that reads as,

φ1−φ0

Mδt
−ε2∆φ1+u1H̄0+αε2ψ1+S(φ1−φ0)=0, (3.8a)

u1−u0=
1
2

∫
Ω

H0(φ1−φ0)dx, (3.8b)

ψ1=(−∆)−1(φ1−φ̄1), (3.8c)

where
H0=H(φ0), H̄0=H0− 1

|Ω|

∫
Ω

H0dx.

By taking the L2 inner product of (3.8a) with 1, we derive φ̄1 = φ̄0. Hence, by taking the
L2 inner product of (3.6a) with 1, we derive

φ̄n+1= φ̄n = ···= φ̄0, (3.9)

which implies that the volume fraction of the numerical solution φn is always conserved
precisely.
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We now discuss the practical implementation procedure. Apparently, even with the
linear property, the scheme (3.6a)-(3.6c) is still hard to solve since it is a coupled and
nonlocal system for φn+1, ψn+1, and un+1, which needs costly iterative solvers to compute
at each time step. To overcome this difficulty, we introduce the following decoupling
procedure that also removes the computations of nonlocal terms efficiently.

We first rewrite (3.6c) as follows:

un+1=
1
2

∫
Ω

H∗,n+1φn+1dx+gn, (3.10)

where

gn =
4un−un−1

3
− 1

2

∫
Ω

H∗,n+1 4φn−φn−1

3
dx. (3.11)

Then the numerical scheme (3.6a)-(3.6b) can be combined together to be

3
2Mδt

φn+1+Sφn+1−ε2∆φn+1+αε2(−∆)−1(φn+1−φ̄n+1)

+
1
2

H̄∗,n+1
∫

Ω
H∗,n+1φn+1dx= g̃n, (3.12)

where g̃n is an explicit term defined as

g̃n =
4φn−φn−1

2Mδt
+Sφ∗,n+1−gnH̄∗,n+1. (3.13)

By taking L2 inner product of (3.12) with 1, we obtain the explicit formula for φ̄n+1 that
reads as

φ̄n+1=
1

( 3
2Mδt +S)|Ω|

∫
Ω

g̃ndx. (3.14)

By utilizing the operator −∆ to (3.12), we have

−
( 3

2Mδt
+S
)

∆φn+1+ε2∆2φn+1+αε2φn+1

− 1
2

∆H̄∗,n+1
∫

Ω
H∗,n+1φn+1dx=−∆g̃n+αε2φ̄n+1. (3.15)

Thus, (3.15) can be rewritten as

P(φn+1)− 1
2

∆H̄∗,n+1
∫

Ω
H∗,n+1φn+1dx= ĝn, (3.16)

here P(·) is the linear operator that can be denoted as follows

P(ψ)=
(
−
( 3

2Mδt
+S
)

∆+ε2∆2+αε2
)

ψ, (3.17)
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and ĝn =−∆g̃n+αε2φ̄n+1.
Define a linear operator P−1(·), such that for any periodic function φ∈ L2(Ω), ψ=

P−1(φ) be the solution of the linear system

P(ψ)=φ, (3.18)

with periodic boundary conditions. Applying P−1 to (3.16), we have

φn+1− 1
2
P−1(∆H̄∗,n+1)

∫
Ω

H∗,n+1φn+1dx=P−1(ĝn). (3.19)

Taking the inner product of (3.19) with H∗,n+1, we find∫
Ω

H∗,n+1φn+1dx=

∫
Ω H∗,n+1P−1(ĝn)dx

1− 1
2

∫
Ω H∗,n+1P−1(∆H̄∗,n+1)dx

. (3.20)

It is not difficult to find

−
∫

Ω
H∗,n+1P−1(∆H̄∗,n+1)dx=−

∫
Ω

H∗,n+1P−1(∆H∗,n+1)dx≥0, (3.21)

since −P−1(∆) be a positive definite. Hence the explicit formula (3.20) is solvable.
Remarkably, Eq. (3.20) can be regarded as an explicit formulation for

∫
Ω H∗,n+1φn+1dx.

Thus, in computations, we first find

ψ1=P−1(ĝn) and ψ2=P−1(∆H̄∗,n+1),

this means that the following two decoupled, biharmonic needs to be solved(
−
( 3

2Mδt
+S
)

∆+ε2∆2+αε2
)

ψ1= ĝn, (3.22a)(
−
( 3

2Mδt
+S
)

∆+ε2∆2+αε2
)

ψ2=∆H̄∗,n+1, (3.22b)

subject to the periodic boundary conditions. Then, using (3.20) to compute the nonlocal
term

∫
Ω H∗,n+1φn+1dx, we can get φn+1 from (3.19) directly.

From the above implementation process, we see that the total cost at each time step is
just solving two decoupled type fourth-order equations with constant coefficients,

ψ1=P−1(ĝn) and ψ2=P−1(∆H̄∗,n+1).

Since equations with the periodic boundary conditions can be easily handled by using
the Spectral method with Fourier basis. Thus, the numerical scheme is highly efficient
with easy implementation process.

The unconditional energy stability of the numerical scheme (3.6a)-(3.6c) is shown as
follows.
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Theorem 3.1. The time-discrete scheme (3.6a)-(3.6c) follows the discrete energy dissipation law
as,

1
δt
(En+1−En)≤− 1

M

∥∥∥3φn+1−4φn+φn−1

2δt

∥∥∥2
≤0, (3.23)

where

En+1=
ε2

2

(‖∇φn+1‖2+‖2∇φn+1−∇φn‖2

2

)
+

αε2

2

(‖∇ψn+1‖2+‖2∇ψn+1−∇ψn‖2

2

)
+
(un+1)2+(2un+1−un)2

2
+S
‖φn+1−φn‖2

2
. (3.24)

Proof. First, by taking the L2 inner product of (3.6a) with 3φn+1−4φn+φn−1, we obtain

1
2Mδt

‖3φn+1−4φn+φn−1‖2+ε2(∇φn+1,∇(3φn+1−4φn+φn−1))

+(un+1H̄∗,n+1,3φn+1−4φn+φn−1)+αε2(ψn+1,3φn+1−4φn+φn−1)

+S(φn+1−φ∗,n+1,3φn+1−4φn+φn−1)=0. (3.25)

From (3.6c), we can derive

−∆(3ψn+1−4ψn+ψn−1)=3φn+1−4φn+φn−1−(3φ̄n+1−4φ̄n+φ̄n−1). (3.26)

Second, we take the L2 inner product of (3.26) with αε2ψn+1 to get

αε2(3∇ψn+1−4∇ψn+∇ψn−1,∇ψn+1)=αε2(3φn+1−4φn+φn−1,ψn+1), (3.27)

where the term

(3φ̄n+1−4φ̄n+φ̄n−1,ψn+1)=0, since
∫

Ω
ψn+1dx=0.

Third, by multiplying (3.6b) with 2un+1, we obtain the following equality,

2(3un+1−4un+un−1)un+1=un+1
∫

Ω
H∗,n+1(3φn+1−4φn+φn−1)dx

=un+1
∫

Ω
H̄∗,n+1(3φn+1−4φn+φn−1)dx, (3.28)

where the validity of the latter equality is due to (3.9).
Finally, we combine (3.25), (3.27), (3.28), and apply the following two identities

2a(3a−4b+c)= a2+(2a−b)2−b2−(2b−c)2+(a−2b+c)2, (3.29a)

(3a−4b+c)(a−2b+c)=(a−b)2−(b−c)2+2(a−2b+c)2, (3.29b)
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to obtain

ε2

2
(‖∇φn+1‖2+‖2∇φn+1−∇φn‖2)− ε2

2
(‖∇φn‖2+‖2∇φn−∇φn−1‖2)

+
αε2

2
(‖∇ψn+1‖2+‖2∇ψn+1−∇ψn‖2)− αε2

2
(‖∇ψn‖2+‖2∇ψn−∇ψn−1‖2)

+
(
(un+1)2+(2un+1−un)2

)
−
(
(un)2+(2un−un−1)2

)
+S‖φn+1−φn‖2

−S‖φn−φn−1‖2+
ε2

2
‖∇φn+1−2∇φn+∇φn−1‖2+

αε2

2
‖∇ψn+1−2∇ψn+∇ψn−1‖2

+(un+1−2un+un−1)2+2S‖φn+1−2φn+φn−1‖2

=− 1
2Mδt

‖3φn+1−4φn+φn−1‖2. (3.30)

Hence, the desired result is obtained after dropping some positive terms.

Remark 3.3. Note 1
δt (En+1−En) is actually a temporal second-order approximation of the

term d
dt E(u,φ) at t= tn+1. Since for any smooth variable ψ with time, we always have the

following heuristic approximations as

‖ψn+1‖2−‖2ψn+1−ψn‖2

2δt
−‖ψ

n‖2−‖2ψn−ψn−1‖2

2δt

∼=
‖ψn+2‖2−‖ψn‖2

2δt
+O(δt2)∼=

d
dt
‖ψ(tn+1)‖2+O(δt2), (3.31)

and

‖ψn+1−ψn‖2−‖ψn−ψn−1‖2

2δt
∼=O(δt2). (3.32)

Remark 3.4. In this paper, we only consider the time discrete schemes. Note all the
proofs are based on a variational formula and the test functions are in the same space as
the space of the trial functions, thus all analytical results can be applied to other Galerkin
approximations method in the space without any essential difficulties. We leave the fully
discrete scheme to the interested readers.

4 Numerical simulation

In this section, we perform the numerical simulations in two and three-dimensional
spaces to demonstrate the accuracy and energy stability of the developed stabilized-SAV
scheme (3.6a)-(3.6c). We use the square 2D or 3D computed domain as Ω= [0,L]d with
d=2,3 and the space with periodic boundary conditions is then discretized by adopting
the Fourier-spectral method.
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4.1 Accuracy and stability test

We perform simulations to test the convergence order of the stabilized-SAV scheme
(3.6a)-(3.6c), defined by SSAV for short. Meanwhile, in order to show its stability and
accuracy, the convergence rates of the non-stabilized version of the SAV scheme is also
computed, i.e., scheme (3.6a)-(3.6c) where S=0, denoted by SAV for short.

We perform refinement tests for temporal convergence. The initial conditions (two
adjacent circles) are set as follows,

φ(x,y,t=0)=
1
4

2

∑
i=1
−tanh

(√(x−xi)2+(y−yi)2−ri

1.5ε

)
+

3
4

, (4.1)

where (x1,y1,r1)=(π−0.8,π,1.4) and (x2,y2,r2)=(π+1.7,π,0.5). We set the model param-
eters to be ε=0.06, S=2, B=1. The accuracy tests are shown by varying two parameters:
the mobility parameter M and nonlocal parameter α.

We discretize the 2D square domain Ω=[0,2π]2 by using Nx=Ny=128 Fourier-modes
for spatial direction. Therefore, the errors from the spatial direction can be ignored, while
the time discretization errors are dominant.

The errors are computed by using the solution obtained with a very tiny time step
size δt=1e−9 computed by the scheme SSAV as the exact solution for computing errors
since the exact solution is not known. By varying the time step sizes, we show the L2

errors of the phase function φ between the exact and approximate solutions at time t=10.
First, we will test the convergence rates for the low stiffness case, where we use small

mobility and nonlocal parameters as M = 1, α = 0.01. In Fig. 1(a), we plotted the L2

errors that are calculated by the two schemes SSAV and SAV. From the accuracy plots, we

(a) M=1, α=0.01 (b) M=100, α=100

Figure 1: The L2 numerical errors for the phase-field variable φ that are computed by using the schemes SSAV
and SAV using various temporal resolutions, where the parameters are set as (a) M=1, α=0.01 (low stiffness
case); (b) M=100, α=100 (high stiffness case).
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(a) Energy evolution by using the stabilized scheme
SSAV

(b) Energy evolution by using the non-stabilized
scheme SAV

Figure 2: High stiffness case: time evolution of the free energy functional (2.14) using various time step sizes
computed by the two schemes SSAV and its non-stabilized version SAV, where the parameters are M= 100,
α=100.

find that the performances of these two schemes are both very good and the accuracies
almost perfectly match the second-order accuracy line. This implies that the stabilizer
term is actually not necessary for the low stiffness case. Second, we test the convergence
rates for the high stiffness case, where we set M=100, α=100. The errors in L2 norm are
plotted in Fig. 1(b). When δt>3.125e−2, we note the accuracy is totally destroyed since
the non-stabilized scheme is not stable. When δt≤ 3.125e−2, the non-stabilized scheme
SAV starts to present the second-order accuracy. On the contrary, we observe that the
stabilized scheme SSAV always show the second-order accuracy since the stability is well
controlled.

Finally, we investigate whether the stabilized scheme SSAV is unconditionally energy
stable by computing various energy evolution curves with different time steps. We still
use the high stiffness case of large mobility and nonlocal parameters as M=100, α=100.
In Fig. 2, the evolution profile of the free energy(2.14) is calculated by schemes SSAV and
SAV. For all test steps, the energy curves calculated by SSAV scheme show monotonic
attenuation, which indicates that our numerical scheme is unconditionally stable, shown
in Fig. 2(a). In contrast, the total energy calculated by the standard SAV method only
decays when δt is very small (δt≤6.25e−2). When the time step δt>6.25e−2, the energy
does not decay, which implies the non-stabilized scheme actually performs bad stability
when large time steps are used.

We summarize all accuracy and stability tests to conclude that, (i) if the stiffness is low,
the stabilizer term is not necessary and both of the stabilized or non-stabilized schemes
can solve the model well; (ii) if the stiffness is high, the stability and accuracy tests show
the stabilized scheme is far more superior to the non-stabilized scheme while using large
time steps.
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Figure 3: The pattern evolution of the phase variable φ in 2D where φ̃=0 and δt=0.01. Snapshots
of the numerical approximation are taken at t=20, 40, 60, 80, 100, and 200.

Figure 4: The pattern evolution of the phase variable φ in 2D where φ̃=0.1 and δt=0.01. Snapshots
of the numerical approximation are taken at t=20, 40, 60, 80, 100, and 200.

4.2 Spinodal Decomposition

In the following example, we will study the spinodal decomposition via the developed
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Figure 5: The pattern evolution of the phase variable φ in 2D where φ̃=0.2 and δt=0.01. Snapshots of the
numerical approximation are taken at t=20, 40, 60, 80, 100, and 200.

scheme SSAV. By setting a perturbed homogeneous binary mixture as the initial condi-
tion, the homogeneous structure finally evolves to the two-phase state due to the sponta-
neous growth of the concentration fluctuations.

4.2.1 2D case

We set the initial condition as the randomly perturbed concentration field as follows,

φ(x,y,t=0)= φ̃+0.001rand(x,y), (4.2)

where the rand(x,y) is the random number in [−1,1] that follows the normal distribution.
We use the stabilized scheme SSAV with the time step δt=0.01 and discretize the domain
[0,2π]2 using Nx = Ny = 256 Fourier modes. The other model parameters are set as α=
300000, ε=0.02, M=1, S=2, B=1.

In Fig. 3, we perform numerical simulations for the initial value φ̃=0 and snapshots of
the phase-field variable φ(x,t) are taken at t=20, 40, 60, 80, 100, and 200. We observe the
final equilibrium solution forms the cylindrical phase where the blue region is entangled
with the red region everywhere. In Fig. 4, by using φ̃ = 0.1, we observe that a small
quantity of the blue region starts to form the BCC phase and most of the blue region still
graft and entangle with the red region. When the initial value is φ̃ = 0.2, illustrated in
Fig. 5, we observe that more blue regions form the BCC phase and a small quantity of it



116 S. Geng, T. Li, Q. Ye, and X. Yang / Adv. Appl. Math. Mech., 14 (2022), pp. 101-124

Figure 6: The pattern evolution of the phase variable φ in 2D where φ̃=0.3 and δt=0.01. Snapshots of the
numerical approximation are taken at t=20, 40, 60, 80, 100, and 200.

still forms the cylindrical phase. Finally, by using φ̃=0.3, presented in Fig. 6, we observe
that the final equilibrium solution turns to be the pure BCC phase in the whole domain.

In Fig. 7, through the side by side comparisons between the final equilibrium numeri-
cal solutions of the above four cases, the equilibrium solution by using the Cahn-Hilliard
model (2.15a)-(2.15c) with the same initial values and parameters, and the experiments
for block copolymers in the thin films (cf. [30]), we can see that the numerical simulations
of the Allen-Cahn model are consistent with Cahn-Hilliard model in quality, and both of
them are consistent with the experimental results.

In Fig. 8, we present the evolution of the total free energy functional (2.14) for all four
cases with initial values of φ̃ = 0, 0.1, 0.2, and 0.3. The energy curves show the decays
with the time that confirms that the scheme SSAV is unconditionally stable.

4.2.2 3D case

We set the initial profile of concentration field as follows

φ(x,y,z,t=0)= φ̃+0.001rand(x,y,z), (4.3)

where the rand(x,y,z) is the random number in [−1,1] that follows the normal distribu-
tion. We use the scheme SSAV with the time step δt=0.01 and discretize the space using
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(a) Allen-Cahn model (b) Cahn-Hilliard model (c) Experiment

Figure 7: Qualitative comparisons of the equilibrium solutions computed by using the new Allen-Cahn model
(2.7a)-(2.7b), the classical Cahn-Hilliard model (2.15a)-(2.15c), and the experimental benchmark of block copoly-
mers in the thin film (cf. [30]). The left panel (a) is the new Allen-Cahn model, the middle panel (b) is the
Cahn-Hilliard model, and the right panel (c) is the experimental results from [30]. From the top panel to the
bottom one, the initial values are φ̃=0, 0.1, 0.2, and 0.3.

Nx = Ny = Nz = 128 Fourier modes. The computed domain is [0,2]3 and the parameters
are α=300000, ε=0.02, M=1, S=2, B=1.

In Figs. 9, 10, and 11, we set the initial value φ̃= 0,0.2 and 0.4, respectively. We plot
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(a) (b)

Figure 8: (a) Time evolution of the free energy functional (2.14) for the 2D spinodal decomposition example
with the initial values of φ̄=0, 0.1, 0.2, and 0.3; (b) is the close-up view where the energies decay fast.

Figure 9: (a) The 3D pattern evolution of the iso-surface of the phase variable φ at t=40, 200, and 500 with
the initial condition is φ̃=0 and time step δt=0.01; (b) 2D cross-section of φ(1,·,·).

the snapshots of the isosurfaces of {φ(x,y,z)=0} at various times. The final equilibrium
solution forms the gyroidal (cylindrical) shape for φ̃=0, the mixed gyroidal and spherical
shapes for φ̃=0.2, and the pure spherical shape for φ̃=0.4. In order to gain a more accurate
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Figure 10: (a) The 3D pattern evolution of the iso-surface of the phase variable φ at t=40, 200, and 500 with
the initial condition is φ̃=0.2 and time step δt=0.01; (b) 2D cross-section of φ(1,·,·).

perspective, the views of cut-off planes φ(1,·,·) of each 3D snapshot are presented. In
Fig. 12, we present the evolution of the total free energy functional (2.14) for these three
cases.

4.3 2D dynamics with the imposed electric field

In this simulation, we apply an external electric field to investigate the pattern forma-
tions. The application of electric fields is an efficient approach to produce various pat-
terns of nano-structured materials. An additional forcing term contributed by the electric
field along x-direction is added to the model system (2.7a)-(2.7b) which reads as follows,

1
M

φt−ε2∆φ+ f (φ)+αε2ψ− 1
|Ω|

∫
Ω

f (φ)dx+βε2(−∆)−1φxx =0, (4.4a)

ψ=(−∆)−1(φ−φ̄). (4.4b)

Notice that the imposed electric term is linear, therefore we can simply modify (3.6a) in
the SSAV scheme as

3φn+1−4φn+φn−1

2Mδt
−ε2∆φn+1+un+1H̄∗,n+1
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+αε2ψn+1+βε2(−∆)−1φn+1
xx +S(φn+1−φ∗,n+1)=0. (4.5)

The computed domain is still [0,2π]2 and the initial condition is still (4.3). We keep the
model parameters M=1, ε=0.02, α=300000, S=2, B=1 and vary the initial value φ̃ and
the magnitude of the electric field parameter β.

Figure 11: (a) The 3D pattern evolution of the iso-surface of the phase variable φ at t=40, 200, and 500 with
the initial condition is φ̃=0.4 and time step δt=0.01; (b) 2D cross-section of φ(1,·,·).

Figure 12: Time evolution of the free energy functional (2.14) for the 3D spinodal decomposition examples with
the initial values of φ̃=0, 0.2, and 0.4.
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Figure 13: The pattern evolution of the phase variable φ in 2D where φ̃=0, δt=0.01, and β=200. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

Figure 14: The pattern evolution of the phase variable φ in 2D where φ̃=0, δt=0.01, and β=1000. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

Figure 15: The pattern evolution of the phase variable φ in 2D where φ̃=0.1, δt=0.01, and β=1000. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

First, we set φ̃=0 and β=200. In Fig. 13, we observe that phase dislocations gradually
disappear and curvy lamellar profiles are finally presented where a few dislocations are
shown. Then by keeping the initial value of φ̃= 0 and increasing the magnitude of the
electric field to β= 1000 in Fig. 14, we observe the lamellar phase become more straight
with relatively fewer dislocations. In Figs. 15, 16, and 17, we keep the strong electric field
β=1000, and change the initial value from φ̃=0.1 to 0.4 with the incremental value of 0.1,
we observe that various patterns of lamellar phases are obtained accordingly. All these
obtained simulations are qualitatively consistent with the numerical results in [14,22,23].
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Figure 16: The pattern evolution of the phase variable φ in 2D where φ̃=0.2, δt=0.01, and β=1000. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

Figure 17: The pattern evolution of the phase variable φ in 2D where φ̃=0.3, δt=0.01, and β=1000. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

Figure 18: The pattern evolution of the phase variable φ in 2D where φ̃=0.4, δt=0.01, and β=1000. Snapshots
of the numerical approximation are taken at t=10, 20, 50, and 200.

5 Concluding remarks

In this paper, we develop a new conserved Allen-Cahn type phase-field model for diblock
copolymers by using the L2-gradient flow approach, where the total volume fraction is
conserved by adding an extra Lagrange multiplier of nonlocal type. To solve the model,
we then develop a semi-discrete in time, easy-to-implement, and second-order scheme.
At each time step, one only needs to solve two decoupled linear equations.

Numerical examples show that the added linear stabilization term is extremely im-
portant to handle stability for large time step simulation. The unconditional energy sta-
bility of the numerical scheme is strictly proved. Compared with other numerical meth-
ods in simulating numerous numerical examples, we show the effectiveness and stability
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of the new scheme.
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