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Abstract. In this paper, the local domain-free discretization (DFD) method is extended
to large eddy simulation (LES) of fluid-structure interaction and the vortex-induced
vibration (VIV) of an elastically mounted rigid circular cylinder, which is held in the
middle of a straight channel, is numerically investigated. The wall model based on the
simplified turbulent boundary layer equations is employed to alleviate the require-
ment of mesh resolution in the near-wall region. The ability of the method for fluid-
structure interaction is demonstrated by simulating flows over a circular cylinder un-
dergoing VIV. The cylinder is neutrally buoyant with a reduced mass m∗=11 and has
a low damping ratio ζ = 0.001. The numerical experiment of the VIV of a cylinder in
an unbounded flow shows that the present LES-DFD method is more accurate and
reliable than the referenced RANS and DES methods. For the cylinder in the middle
of a straight channel, the effect of the channel height (d∗= d/D) is investigated. The
variations of the response amplitude, vortex-shedding pattern and the length of the
induced separation zone in the channel boundary layers with the channel height are
presented.

AMS subject classifications: 74F10, 76F65
Key words: Immersed boundary method, domain-free discretization, large-eddy simulation,
fluid-structure interaction, vortex-induced vibration.

1 Introduction

For the numerical investigation of fluid-structure interactions (FSI), transient re-meshing
strategies, such as grid deformation/regeneration techniques, are usually required in
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boundary-conforming methods, which are time-consuming and increase the algorith-
mic complexity. Transient re-meshing strategies may work well in the framework of
Reynolds-Averaged-Navier-Stokes (RANS), but typically lack accuracy when being cou-
pled with eddy-resolved methodologies. The immersed boundary (IB) method, which
can solve moving-boundary problems on a fixed mesh, is an alternative approach.

The IB method was firstly proposed by Peskin [1] to investigate FSI in the cardiovas-
cular circulation. So far, many amendments have been proposed with the aim of improv-
ing the stability and the applicability of this method [2, 3]. The fundamentals and the
recent applications to simulations of complex fluid-structure-interaction (FSI) problems
are reviewed by Sotiropoulos and Yang [4] and Huang and Tian [5]. In [6, 7], Shu et al.
proposed an IB method, named the domain-free discretization method (DFD), to solve
partial differential equations (PDEs) on irregular domains. In the DFD method, the dis-
crete form of a PDE at an interior node in the immediate vicinity of the IB may involve
some exterior nodes. In the original DFD method, the functional values at an exterior
dependent node are evaluated along the whole mesh line, so it is not applicable for com-
plex domains. To make the method more general, a local DFD method was developed
by Zhou et al. [8], in which the functional values at the exterior dependent nodes are ob-
tained by using a proper local extrapolation along the direction normal to the wall and in
conjunction with the boundary conditions. The local DFD method has been successfully
applied to simulate various inviscid or laminar flows [8, 9]. Recently, it was extended to
RANS simulation [10] and large eddy simulation (LES) [11] of turbulent flows by intro-
ducing the wall modeling techniques to alleviate the requirement of mesh resolution for
the boundary layer.

Vortex-induced vibration (VIV) is a popular topic in the FSI field. This topic elicited
the attention of researchers after the dramatic collapse of the Tacoma Narrows Bridge in
1940. The VIV phenomenon involves complicated physical mechanisms and cannot be
despised in design of longer and slender structures, such as skyscrapers, bridges, and
chimneys.

Most previous VIV studies are focused on the paradigm of a freely vibrating, elas-
tically mounted rigid cylinder placed in a uniform and unbounded cross-flow. In the
review of Williamson and Govardhan [12], the importance of several dimensionless vari-
ables are highlighted, including the mass ratio (m∗), the damping ratio (ζ), and the re-
duced velocity (Ur). Khalak and Williamson [13] reported that the amplitude response
of a one-degree-of-freedom (one-DOF) VIV system can be categorized into two types,
according to its mass-damping ratio (m∗ζ). With a lower m∗ζ, there are three distinct
branches in the response curve with the variation of reduced velocity. The three branches
are termed as the ”initial”, ”upper” and ”lower” branches. With a higher m∗ζ, the upper
branch does not exist.

To date, only a few studies have been dedicated to identifying the effect of a single
plane wall in the vicinity of the elastically mounted cylinder. In this case, the cylinder
is immersed in a semi-infinite flow and the dynamics of VIV is much more complex.
The gap ratio, S∗ = S/D, defined as the distance between the cylinder bottom and the
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wall boundary in the equilibrium condition and normalized by the cylinder diameter
D, is one of the dominant parameters of interest. Chung [14] numerically investigated
the VIV of a cylinder in a semi-infinite flow under laminar vortex shedding conditions
and observed that the maximum amplitude of vibration decreases as S∗ decreases. In
the work of Daneshvar and Morton [15], the VIV of a circular cylinder with a small m∗ is
investigated experimentally under turbulent conditions and it was revealed that, for S∗<
3, the amplitude of vibration decreases monotonically until S∗≈ 0.5, where the cylinder
begins to periodically impact the wall.

Most of the numerical investigations of the VIV of a circular cylinder in the un-
bounded or semi-infinite flows are restricted to low Reynolds numbers (Re=10−103) [14,
16, 17], in which many mechanisms were illustrated and explored. For the cylinder VIV
problems at higher Reynolds numbers in the range of 104−106, most of the current nu-
merical simulations are conducted by the two-dimensional RANS simulation and the
resolution of flow features is not sufficient. In the work of Pan et al. [18] for the VIV of
an elastically mounted rigid circular cylinder, a two-dimensional RANS code equipped
with the SST k−ω turbulence model is used. Although vortex mode and transition in the
branches agree well with the referenced experimental results, there are some discrepan-
cies in the result of the maximum amplitude in the upper branch. More recently, khan
et al. [19] conducted the RANS simulation of the VIV of a cylinder and the maximum
amplitude is underestimated considerably. The challenge of capturing the maximum
oscillation amplitude has been discussed in [20, 21]. The influence of the spanwise tur-
bulence in the wake is omitted when doing a two-dimensional simulation. As shown in
the earlier work of Rosetti et al. [22], RANS models do not provide sufficient resolution
for flows over a cylinder, especially for high Reynolds numbers, due to their intrinsic
properties of isotropic eddy viscosities and homogeneous Reynolds stresses.

With the continuous progress of computer technology, the trend of numerical inves-
tigation of the VIV of circular cylinder is diverted to LES. Jus et al. [23] investigated the
feasibility and accuracy of LES of the cylinder VIV and showed the ability of LES to re-
produce the mechanism responsible for energy exchanges involved in the interaction be-
tween flow and moving boundary of the cylinder. In the work of Pastrana et al. [24], the
VIV of a low-mass-ratio two-DOF circular cylinder at subcritical Reynolds numbers was
investigated by LES. The results of the maximum amplitude and frequency of motion in
both directions are in good agreement with the referenced experimental data.

In this work, the DFD method is extended to LES of FSI and the VIV of a cylinder held
in the middle of a straight channel is numerically investigated. For the reminder of the
paper, the content is arranged as follows. In Section 2, the governing equations and nu-
merical approximations are briefly presented. The treatment of the immersed boundary
and the wall modeling technique in LES are discussed in Section 3. Section 4 presents the
algorithms for coupling of FSI. In Section 5, VIV of a cylinder in an unbounded flow is
simulated to verify the accuracy and efficiency of the LES-DFD method for FSI problems.
The effects of the channel boundaries on the VIV characteristics of the cylinder are also
investigated in this section. Finally, summary and conclusion are given in Section 6.
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2 Governing equations and numerical approximations

An incompressible fluid with constant density and viscosity is considered in this paper.
Employing a subgrid-scale (SGS) model, the filtered N-S equations in non-dimensional
form can be written as

Im · ∂w
∂t

+
∂fi

∂xi
=

∂gi

∂xi
, (2.1)

where w, fi and gi are the vectors of filtered flow variables, convective fluxes and viscous
fluxes, respectively,

w=


p̄

ū1
ū2
ū3

, fi =


ūi

ū1ūi+ p̄δ1i
ū2ūi+ p̄δ2i
ū3ūi+ p̄δ3i

, gi =
1

Re
(1+νt/ν)


0

2S̄i1
2S̄i2
2S̄i3

, (2.2)

and Im=diag(0,1,1,1) is the modified identity matrix annihilating the temporal derivative
of pressure from the continuity equation. In Eq. (2.2), p̄ and ūi are filtered pressure and
velocity, δij the Kronecker’s delta, ν the molecular viscosity, νt the eddy viscosity, S̄ij the
strain-rate tensor,

S̄ij =
1
2

(
∂ūi

∂xj
+

∂ūj

∂xi

)
. (2.3)

The eddy viscosity νt in Eq. (2.2) is modelled to be

νt =Cs∆̄2 ∣∣S̄∣∣, (2.4)

where |S|=
√

2S̄ijS̄ij is the magnitude of the strain-rate tensor, Cs the coefficient and ∆̄
the filter width. Cs is determined dynamically by the Lagrangian averaging procedure
proposed by Meveneau et al. [25] and ∆̄ is related to the grid spacing by the cube root of
the cell volume for the tetrahedral mesh used in this work.

Applying the Galerkin finite-element approach proposed by Mavriplis and Jame-
son [26] and the concept of a lumped mass matrix, the semi-discrete form of Eq. (2.1)
at a node P can be obtained,

Im ·ΩP

(
∂w
∂t

)
P
=−

ne

∑
e=1

FA+FB+FC

3
·∆SABC+

ne

∑
e=1

4
3

Ge ·∆SABC, (2.5)

where F and G represent the inviscid and viscous flux tensor respectively, ne the number
of the tetrahedrons sharing the vertex P, and ΩP the volume sum of these tetrahedrons.
As shown in Fig. 1, ∆SABC in Eq. (2.5) is the directed (outward normal) area of the trian-
gular face opposite to P, FA, FB and FC are the inviscid flux tensors at vertex A, B and C
respectively, and Ge is the constant viscous flux tensor over tetrahedron PABC.
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Figure 1: Directed area of influence-domain-boundary face of a tetrahedron.

For temporal discretization, a dual-time-stepping scheme [27] is employed. The
method of artificial compressibility [27] is employed to reduce the disparity in speeds of
sound wave and convective wave. The Galerkin finite-element approximation is equiv-
alent to the central difference. To prevent odd-even decoupling, an artificial dissipation
operator [27] is adopted.

3 IB treatment by local DFD method and wall-modeling in
DFD-LES

An immersed boundary method, named the local domain-free discretization (DFD)
method [9,11], is employed to deal with the moving solid boundaries in LES of VIV prob-
lems. In the local DFD method, a partial differential equation is discretized at all mesh
nodes inside the solution domain, but the discrete form at an interior node in the imme-
diate vicinity of the immersed boundary involves some exterior nodes. This method has
been extended to LES by Pu et al. [11], in which the wall modeling technique is adopted
to alleviate the requirement of mesh resolution for the turbulent boundary layer. Here,
with reference to Fig. 2, the evaluation of flow variables at an exterior dependent node is
described briefly.

First, a reference point inside the solution domain is defined to calculate the flow
variables at a given exterior dependent node. As depicted in Fig. 2, the point F on the
wall-normal line with a distance δ from the wall-normal intersection W is defined as the
reference point for the exterior dependent node D. The constant distance is calculated as

δ= max
i=1,ND

δi,

where ND is the total number of the exterior dependent nodes and δi is the distance
between W and E. Point E is the interception between the normal line and the nearest-
to-wall triangular face whose vertices are all interior nodes. The flow variables at F can
be obtained via linear interpolation over its host tetrahedron, i.e., ABCH in Fig. 2.
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Fig.2 Immersed boundary model. D: exterior dependent node for A, B, C; F: reference point; W: 
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Figure 2: Immersed boundary model. D: exterior dependent node for A, B, C; F: reference point; W: wall-
normal intersection.

Solving a simplified momentum equation in the wall-normal direction and using the
non-penetration condition at point W, the pressure at D can be obtained,

pD = pF+|FD|
(

dṼ
dt

)
W

, (3.1)

where Ṽ is the normal velocity of the body motion and pF the pressure at F. According
to the non-penetration condition at W, the linear extrapolation gives the normal velocity
at D,

ṽD =
|FD|ṼW−|WD|ṽF

|FW| , (3.2)

with ṼW the normal velocity of the body motion at W and ṽF the normal velocity at the
reference point F. To calculate the tangential velocities at the exterior dependent node
D, the wall shear stresses yielded by the wall modeling technique are enforced at the
immersed boundary. A modified local coordinate system [28,29] is employed to simplify
the solution of the wall model. This local coordinate is composed of the streamwise direc-
tion η, the wall-normal direction n, and the binormal direction ζ which is perpendicular
to the η−n plane. The streamwise direction η is approximated to be the projection of the
velocity direction at the reference point onto the surface. With this local system, the wall
model only needs to be solved in the η- direction.

The wall model adopted in this work is based on the simplified TBLEs [30], which
can be written as

∂

∂n

[
(v+vt)

∂ũ
∂n

]
=0, (3.3)

where ũ is the velocity in tangential direction η. Imposing the no-slip condition at W and
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integrating Eq. (3.3) from F to W, the wall shear stress is obtained,

τw = µ
∂ũ
∂n

∣∣∣∣
y=0

=
ũF−ŨW∫ δ

0
dy

v+vt

, (3.4)

where ŨW is the tangential velocity of body motion at W and ũF the tangential velocity
of fluid at the reference point F. With the approximation of τw,

τw = µ
∂ũ
∂n

∣∣∣∣
y=0
≈ (vF+vt,F)

ũF−ũD

|FD| , (3.5)

the tangential velocity at the exterior dependent node D can be obtained,

ũD = ũF−
|FD|

vF+vt,F
τw, (3.6)

where vF and v(t,F) are the molecular and eddy viscosities at F, respectively.
For more details, one can refer to the work of Pu et al. [11].

4 Algorithms for coupling of FSI

The local DFD method coupling with the wall modeling technique for LES of turbulent
flows has been validated via numerical experiments for various turbulent flows involv-
ing stationary or moving boundaries [11]. To validate the performance of present LES-
DFD method for simulating FSI problems, the one-DOF motion of an elastically mounted
cylinder freely oscillating in the cross-flow direction is considered in this work. The mo-
tion of a rigid circular cylinder can be represented by the following non-dimensional
equation,

d2Y
dt2 +

4πζ

Ur

dY
dt

+
4π2

U2
r

Y=
2Cy

πm∗
. (4.1)

In this equation, Y = y/D denotes non-dimensional displacement of the cylinder, ζ =
c/(2
√

Km) the damping ratio, m∗ the reduced mass (mass ratio), Cy = 2Fy/(ρDU2
∞) the

lift coefficient and Ur =U∞/( fnD) the reduced velocity, with fn the damped natural fre-
quency of the structure, U∞ the free-stream velocity, D the diameter of cylinder, ρ the
fluid density, m, c, and K the mass, damping coefficient and the stiffness coefficient of the
spring oscillator, respectively.

The fluid and structure dynamics are coupled together by the following no-slip con-
ditions:

ū2=
dY
dt

at Γ, (4.2)

where Γ represents the fluid/structure interface. Eq. (4.1) is a second-order ordinary
differential equation. Numerically, this equation can be solved by transforming it into
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two first-order ordinary differential equations as follows

dY
dt

=φ, (4.3a)

dφ

dt
+

4πζ

Ur
φ+

4π2

U2
r

Y=
2Cy

πm∗
. (4.3b)

The algorithm for loose and strong coupling of fluid-structure interaction (LC-FSI and
SC-FSI) presented by Borazjani et al. [31] is adopted. The LC-FSI is very attractive from
the viewpoint of computational cost since it requires the solution of equations of fluid
motion only once at each time step. However, LC-FSI is known to experience numerical
instability because of its explicit nature [32]. In the proceeding VIV simulations, LC-FSI
algorithm is not always stable. When the LC-FSI algorithm is unstable, it is replaced by
the SC-FSI one. The SC-FSI implementation is substantially more expensive than LC-
FSI since SC-FSI requires an iterative solution of the structure equations and the fluid
equations need to be fully converged within each iteration.

5 Numerical experiments

In this work, all the numerical tests are performed at Re=(U∞D)/v= 104, m∗= 11 and
ζ=0.001. These parameters are chosen to match those in the experimental study of Hover
et al. [33]. The tetrahedral meshes used in our simulation are obtained by dividing the
hexahedral cells of Cartesian meshes. To alleviate the mesh resolution in the near-wall
region, the wall model based on the simplified TBLEs [30] is adopted. The application of
wall modeling technique dictates that the near-wall mesh reslotion must be smaller than
the boundary thickness. Successive refinement of the three dimensional LES mesh will
lead to a dramatic increase of node number. So, in this work, the test of grid independent
or grid convergence with a global mesh refinement is very difficult to be conducted due to
the extremely large computational cost. In addition, the solution of implicitly filtered LES
is sensitive to the numerical grid used [34]. For some LES solution, grid refinement causes
the agreement with direct numerical simulation or experimental data to deteriorate [34].

5.1 VIV of an elastically-mounted circular cylinder in unbounded flows

The purpose of this section is to verify the accuracy and efficiency of the present LES-
DFD method for VIV simulation. Numerical simulation of the unbounded flows around
an elastically-mounted circular cylinder is conducted. Cylinder oscillation is constrained
in the y-direction by a spring-damper system with the stiffness coefficient K and damping
coefficient c, as shown in Fig. 3. The reduced velocity Ur ranges from 3 to 9. The variation
of Ur is achieved by altering the frequency ratio ωt (ratio of damped natural frequency
of structure to fixed-cylinder vortex-shedding frequency) while maintaining the velocity
of the freestream. Hover et al. [33] indicated that cylinder vibration is characterized by
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Figure 3: Flow around a circular cylinder with one degree of freedom.

 

computational nodes of the numerical simulations in this section ranges from 61.6 10  
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Fig. 4 Sketch map of the computational domain 

As shown in Fig. 5, the non-dimensional amplitudes *A  and the phase differences 

between lift and displacement for various reduced velocities are compared with those 

of the two-dimensional RANS simulation [19], three-dimensional DES (detached eddy 

simulation) [40] and experimental investigations [33]. The maximum response 

amplitude of * 0.99A =  is presently predicted at 5.84rU =  in the upper branch. As 

shown in Fig. 5a, compared to the results of the referenced two-dimensional RANS or 

three-dimensional DES, the amplitudes in the lock-in region predicted by the present 

LES-DFD method agree much better with the experimental data. As shown in Fig. 5b, 

 
Cylinder 

   

Figure 4: Sketch map of the computational domain.

the frequency ratio ωt. The algorithm for LC-FSI is always applicable for high m∗ [35,36].
So, the algorithm for LC-FSI is adopted, except for the case Ur = 5.84. Our numerical
experiment shows that when LC-FSI is adopted for Ur =5.84, the response amplitude is
much under-predicted and this may be due to the complexity of the fluid dynamics at
this reduced velocity. Therefore, the SC-FSI algorithm is adopted for Ur =5.84.

The sizes of the computational domain are 30D and 20D in the streamwise and ver-
tical directions, respectively. The two-dimensional sketch map of the computational do-
main is illustrated in Fig. 4. The background mesh is stretched in the x and y direc-
tions to make the mesh fine enough within the region where the cylinder will pass. In
the wall-resolved LES/body-fitted computation for flows over a stationary cylinder at
Re= 3900 [37, 38], the height of the first cell at the cylinder surface is about 3×10(−3)D.
In this work, wall-modeling technique is adopted at the immersed solid surface, so the
mesh spacings in the near-wall region are set to be ∆x=∆y=0.01D, which is much larger
than those in the wall-resolved LES computation. The maximum distance to the wall for
all the reference points, y+|max is first calculated at each time step and then y+ is defined
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LES-DFD method agree better with the experimental data. The variation of phase 

differences has a distinct shift from 0 to 180 . Fig. 6 shows the instantaneous three-

dimensional vortex shedding pattern in the wake of the cylinder for 5.84rU =  

represented by the isosurface of 0.3Q = , and the contours of the spanwise vorticity 

defined as ( ) ( )3 2 2 3 /z u x u x U D =   −   are plotted on the isosurface.  
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Figure 5: Comparison of the response amplitude (a) and phase difference (b) with referenced experimental and
numerical results.

to be
y+=

1
Nt

∑
i=1,Nt

y+|max

with Nt the total number of the averaging times. For Ur=3.78,4.4,5.26,5.84,6.56 and 8.77,
y+ is 16.7, 17.9, 20.3, 20.0,17.3 and 16.8, respectively. Due to the coarse mesh resolution,
the size of the mesh used by wall-modeled LES can be reduced greatly. The total num-
ber of the computational nodes of the numerical simulations in this section ranges from
1.6×106 to 3.4×106 for different Ur. Meyer et al. [39] conducted a LES of the turbulent
flow (Re=3900) over a stationary cylinder with an immersed boundary method and the
total number of computational nodes was about 7 million, even if a local mesh refinement
was employed. The spanwise size of the domain is set to be 4D and the constant mesh
spacing in spanwise direction is ∆z=0.1D. Periodicity is imposed in the spanwise direc-
tion. Based on the linearized characteristics approach [27], approximate non-reflecting
far-field boundary conditions are constructed to improve the accuracy and rate of con-
vergence. The size of non-dimensional time step is taken to be 0.003.

As shown in Fig. 5, the non-dimensional amplitudes A∗ and the phase differences
between lift and displacement for various reduced velocities are compared with those
of the two-dimensional RANS simulation [19], three-dimensional DES (detached eddy
simulation) [40] and experimental investigations [33]. The maximum response amplitude
of A∗=0.99 is presently predicted at Ur=5.84 in the upper branch. As shown in Fig. 5(a),
compared to the results of the referenced two-dimensional RANS or three-dimensional
DES, the amplitudes in the lock-in region predicted by the present LES-DFD method
agree much better with the experimental data. As shown in Fig. 5(b), compared to the
referenced DES results, the phase differences predicted by the present LES-DFD method
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Figure 6: Isosurface of Q=0.3 and the contours of the spanwise vorticity on the isosurface.

agree better with the experimental data. The variation of phase differences has a distinct
shift from 0 to 180◦. Fig. 6 shows the instantaneous three-dimensional vortex shedding
pattern in the wake of the cylinder for Ur =5.84 represented by the isosurface of Q=0.3,
and the contours of the spanwise vorticity defined as

ωz =

(
∂u3

∂x2
− ∂u2

∂x3

)(
U
D

)−1

are plotted on the isosurface.
The corresponding power spectra density (PSD) for Y and Cy are shown in Fig. 7.

As the natural frequency of the structure fn approaches the vortex-shedding frequency
f , the lock-in phenomenon or synchronization occurs. This behavior can be observed in
Fig. 7, when the frequency ratios are at ωt = 1.0 and 0.8. It can also be seen from Fig. 7
that there is only a single frequency component in the displacement response while there
are multiple harmonics in the lift force. When displacement frequencies of the cylinder
are close to natural frequency of the structure, the PSD of lift coefficient shows multiple
frequencies, which has also been referred in the DES investigation of Nguyen et al. [40].

5.2 VIV of a circular cylinder in channel flows: effects of the channel height

In this section, the VIV of a circular cylinder in channel flows is considered and the con-
figuration is illustrated in Fig. 8. We aim to investigate the effects of the non-dimensional
channel height d∗=d/D on the cylinder response at a selected reduced velocity Ur=6.56,
which is in the upper branch for unbounded flow. The Reynolds number, reduced mass
and damping ratio are the same as those in Section 5.1 and d∗ are set to be 1.6, 2.6, 3.4,
4 and 6. Without considering the case of cylinder hitting the walls and being bounced
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frequency f , the lock-in phenomenon or synchronization occurs. This behavior can 

be observed in Fig. 7, when the frequency ratios are at 1.0t =  and 0.8. It can also be 

seen from Fig. 7 that there is only a single frequency component in the displacement 

response while there are multiple harmonics in the lift force. When displacement 

frequencies of the cylinder are close to natural frequency of the structure, the PSD of 

lift coefficient shows multiple frequencies, which has also been referred in the DES 

investigation of Nguyen et al. [40]. 

 

(a) PSD of displacement (left) and lift coefficient (right), 2.1=t  ( 4.44rU = ) 

 

(b) PSD of displacement (left) and lift coefficient (right), 0.1=t  ( 5.26rU = ) 

(a) PSD of displacement (left) and lift coefficient (right), ωt =1.2 (Ur =4.44)
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(b) PSD of displacement (left) and lift coefficient (right), 0.1=t  ( 5.26rU = ) (b) PSD of displacement (left) and lift coefficient (right), ωt =1.0 (Ur =5.26)
 

 

(c) PSD of displacement (left) and lift coefficient (right), 8.0=t  ( 6.56rU = ) 

 

(d) PSD of displacement (left) and lift coefficient (right), 6.0=t  ( 8.77rU = ) 

Fig. 7 Power spectral density of non-dimensional displacement and lift coefficient at various 

frequency ratio ( 11* =m , 001.0= , 10000=Re ) 

5.2. VIV of a circular cylinder in channel flows: effects of the channel height 

In this section, the VIV of a circular cylinder in channel flows is considered and the 

configuration is illustrated in Fig. 8. We aim to investigate the effects of the non-

dimensional channel height * /d d D=  on the cylinder response at a selected reduced 

velocity 56.6=rU , which is in the upper branch for unbounded flow. The Reynolds 

number, reduced mass and damping ratio are the same as those in Section 5.1 and *d  

are set to be 1.6, 2.6, 3.4, 4 and 6. Without considering the case of cylinder hitting the 

walls and being bounced back, the minimum value of *d  is chosen to be 1.6. The 

(c) PSD of displacement (left) and lift coefficient (right), ωt =0.8 (Ur =6.56)
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(c) PSD of displacement (left) and lift coefficient (right), 8.0=t  ( 6.56rU = ) 

 

(d) PSD of displacement (left) and lift coefficient (right), 6.0=t  ( 8.77rU = ) 

Fig. 7 Power spectral density of non-dimensional displacement and lift coefficient at various 

frequency ratio ( 11* =m , 001.0= , 10000=Re ) 

5.2. VIV of a circular cylinder in channel flows: effects of the channel height 

In this section, the VIV of a circular cylinder in channel flows is considered and the 

configuration is illustrated in Fig. 8. We aim to investigate the effects of the non-

dimensional channel height * /d d D=  on the cylinder response at a selected reduced 

velocity 56.6=rU , which is in the upper branch for unbounded flow. The Reynolds 

number, reduced mass and damping ratio are the same as those in Section 5.1 and *d  

are set to be 1.6, 2.6, 3.4, 4 and 6. Without considering the case of cylinder hitting the 

walls and being bounced back, the minimum value of *d  is chosen to be 1.6. The 

(d) PSD of displacement (left) and lift coefficient (right), ωt =0.6 (Ur =8.77)

Figure 7: Power spectral density of non-dimensional displacement and lift coefficient at various frequency ratio
(m∗=11, ζ=0.001, Re=10000).

 

streamwise size of the computational domain and the size of time step are also the same 

as those in Section 3. The spanwise size of the computational domain is 4D , which is 

consistent with the numerical simulations of cylinder VIV in unbounded or semi-

infinite flows at similar Reynolds numbers [23, 24, 41]. The wall modeling technique 

is applied at the cylinder surface as well as the upper and lower walls of the channel. 

The mesh is stretched in the vertical direction and the mesh resolution in this direction 

is 0.01y D =  near all the solid walls. The piston condition is applied at the inlet and 

the convective condition [42] is applied at the exit. The total number of computational 

nodes ranges from 6104.2    to 6105.4    for different channel heights. The fluid 

dynamics are much more complex due to the existence of the channel walls, so the SC-

FSI algorithm is adopted in all the computations in this subsection. 

 

Fig. 8 Side view of a cylinder in a straight channel, which is elastically mounted and subject to VIV 

in the transverse direction 

Fig. 9 displays the time histories of the non-dimensional displacement of the cylinder 

for different channel heights. The variation of the response amplitude with the height 

*d  is presented in Fig. 10. It can be seen obviously that the cylinder vibration depends 

strongly on *d  . The amplitude of vibration increases monotonically with *d   until 

4* d  , and then the variation of displacement becomes nearly sinusoidal with a 

constant frequency. In the work of Wang et al. [43], the circular cylinder is held at 

 

d 

Figure 8: Side view of a cylinder in a straight channel, which is elastically mounted and subject to VIV in the
transverse direction.

back, the minimum value of d∗ is chosen to be 1.6. The streamwise size of the compu-
tational domain and the size of time step are also the same as those in Section 3. The
spanwise size of the computational domain is 4D, which is consistent with the numeri-
cal simulations of cylinder VIV in unbounded or semi-infinite flows at similar Reynolds
numbers [23, 24, 41]. The wall modeling technique is applied at the cylinder surface as
well as the upper and lower walls of the channel. The mesh is stretched in the vertical
direction and the mesh resolution in this direction is ∆y=0.01D near all the solid walls.
The piston condition is applied at the inlet and the convective condition [42] is applied
at the exit. The total number of computational nodes ranges from 2.4×106 to 4.5×106 for
different channel heights. The fluid dynamics are much more complex due to the exis-
tence of the channel walls, so the SC-FSI algorithm is adopted in all the computations in
this subsection.

Fig. 9 displays the time histories of the non-dimensional displacement of the cylinder
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various heights above a single plane wall and is also subjected to vibrate in the 

transverse direction. Also for the reduced velocity that is in the upper branch for 

unbounded flow, Wang et al. reported a variation of the response amplitude similar to 

that in Fig. 10. 
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Fig. 9 Time histories of non-dimensional displacement ( Y  ) at different *d   for the near-wall 

cylinder undergoing VIV at 56.6=rU . 

 

Fig. 10 Variation of response amplitude of the cylinder with *d . 

For different values of *d , the motion of the cylinder exhibits different features. 

When *d  is small, as shown in Fig. 9 for * 1.6d = , the displacement pattern generally 

is very complex due to the presence of the two parallel walls. When *d  becomes larger, 

the displacement patterns become nearly sinusoidal, as shown in Fig. 9 for * 4d =  and 

6. The PSD for displacement and lift coefficient at * 1.6d =  and 4 are shown in Fig. 

11. In the case of * 1.6d = , the response of the cylinder exhibits some type of non-

linearities. The peaks in the displacement spectrum (the left in Fig. 11) clearly indicate 

that the response displacement has multiple frequencies. In the case of * 4d =  , the 

displacement spectrum has only one frequency. It can be seen from the spectrum of lift 
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Figure 9: Time histories of non-dimensional displacement (Y) at different d∗ for the near-wall cylinder undergoing
VIV at Ur =6.56.
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Figure 10: Variation of response amplitude of the cylinder with d∗.

for different channel heights. The variation of the response amplitude with the height
d∗ is presented in Fig. 10. It can be seen obviously that the cylinder vibration depends
strongly on d∗. The amplitude of vibration increases monotonically with d∗ until d∗≈4,
and then the variation of displacement becomes nearly sinusoidal with a constant fre-
quency. In the work of Wang et al. [43], the circular cylinder is held at various heights
above a single plane wall and is also subjected to vibrate in the transverse direction. Also
for the reduced velocity that is in the upper branch for unbounded flow, Wang et al.
reported a variation of the response amplitude similar to that in Fig. 10.

For different values of d∗, the motion of the cylinder exhibits different features. When
d∗ is small, as shown in Fig. 9 for d∗ = 1.6, the displacement pattern generally is very
complex due to the presence of the two parallel walls. When d∗ becomes larger, the
displacement patterns become nearly sinusoidal, as shown in Fig. 9 for d∗=4 and 6. The
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coefficient (the right in Fig. 11) that the vortices are shedding in multiple frequencies, 

which is different from the VIV of a cylinder in unbounded flow (See Fig. 7c).  

 

(a) 6.1* =d  

 

(b) 4* =d  

Fig. 11 Power spectra density of displacement (left) and lift coefficient (right) at different *d . 

Fig. 12 shows the patterns of vortex shedding in the instantaneous span-averaged 

flow field when the cylinder is near or at the equilibrium position. In the two-

dimensional RANS results of [18, 44, 45], the vortex street in 2S or 2P mode is regular. 

In the present results shown in Figs. 12, the near-cylinder wake flow has broken into a 

chaotic state. It can be clearly seen from the vortex patterns that when * 1.6d = , the 

formation of vortex shedding from the cylinder surface is suppressed by the wall 
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Fig. 11 Power spectra density of displacement (left) and lift coefficient (right) at different *d . 
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flow field when the cylinder is near or at the equilibrium position. In the two-

dimensional RANS results of [18, 44, 45], the vortex street in 2S or 2P mode is regular. 

In the present results shown in Figs. 12, the near-cylinder wake flow has broken into a 

chaotic state. It can be clearly seen from the vortex patterns that when * 1.6d = , the 

formation of vortex shedding from the cylinder surface is suppressed by the wall 

(b) d∗=4

Figure 11: Power spectra density of displacement (left) and lift coefficient (right) at different d∗.

PSD for displacement and lift coefficient at d∗= 1.6 and 4 are shown in Fig. 11. In the
case of d∗= 1.6, the response of the cylinder exhibits some type of non-linearities. The
peaks in the displacement spectrum (the left in Fig. 11) clearly indicate that the response
displacement has multiple frequencies. In the case of d∗=4, the displacement spectrum
has only one frequency. It can be seen from the spectrum of lift coefficient (the right in
Fig. 11) that the vortices are shedding in multiple frequencies, which is different from the
VIV of a cylinder in unbounded flow (see Fig. 7(c)).

Fig. 12 shows the patterns of vortex shedding in the instantaneous span-averaged
flow field when the cylinder is near or at the equilibrium position. In the two-
dimensional RANS results of [18, 44, 45], the vortex street in 2S or 2P mode is regular.
In the present results shown in Fig. 12, the near-cylinder wake flow has broken into a
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proximity and the separation zone in the boundary layers on the channel walls is not 

large. The vortex shedding from the cylinder surface when * 2.6d =   and 3.4 are 

obviously in 2S mode. Even though the predicted response amplitudes at * 4d =  and 

6 are close to each other, the vortex shedding patterns are different due to the effect of 

the channel walls. Moreover, at * 4d = , the channel walls are induced to separate by 

the vortices shedding from the cylinder surface, while at * 6d =  , the effect of the 

vortices on the plane boundary layers is weak and no separation occurs in the wall 

boundary layers. However, the boundary layer over the flat walls downstream the 

cylinder becomes a bit thicker. Fig. 13 is the partial view of the separation zone on the 

top wall of the channel for * 4d = . For * 2.6d = , 3.4 and 4, the length of the separation 

zone in the boundary layers on the channel walls decreases as *d  gets larger. 
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Figure 12: Vortex contour and streamlines in the instantaneous span-averaged flow field of the vibrating cylinder
with various d∗ at Re=10000, Ur =6.56, and ζ=0.001.

chaotic state. It can be clearly seen from the vortex patterns that when d∗= 1.6, the for-
mation of vortex shedding from the cylinder surface is suppressed by the wall proximity
and the separation zone in the boundary layers on the channel walls is not large. The vor-
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Fig. 12 Vortex contour and streamlines in the instantaneous span-averaged flow field of the 

vibrating cylinder with various *d  at 10000=Re , 56.6=rU , and 001.0= . 

 

Fig. 13 Partial view of the streamlines at 4* =d . 
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Figure 13: Partial view of the streamlines at d∗=4.

tex shedding from the cylinder surface when d∗= 2.6 and 3.4 are obviously in 2S mode.
Even though the predicted response amplitudes at d∗=4 and 6 are close to each other, the
vortex shedding patterns are different due to the effect of the channel walls. Moreover,
at d∗ = 4, the channel walls are induced to separate by the vortices shedding from the
cylinder surface, while at d∗= 6, the effect of the vortices on the plane boundary layers
is weak and no separation occurs in the wall boundary layers. However, the boundary
layer over the flat walls downstream the cylinder becomes a bit thicker. Fig. 13 is the
partial view of the separation zone on the top wall of the channel for d∗=4. For d∗=2.6,
3.4 and 4, the length of the separation zone in the boundary layers on the channel walls
decreases as d∗ gets larger.

6 Conclusions and summary

In this study, the DFD method is extended to LES of FSI and the VIV of an elastically
mounted rigid circular cylinder held in the middle of a straight channel, is numerically
investigated. To alleviate the requirement of the near-wall mesh resolution, a wall mod-
eling technique based on the simplified TBLEs is employed.

The accuracy of the present LES-DFD method for FSI is verified by the simulation of
flows around an elastically-mounted cylinder in an unbounded flow. It is shown that the
present LES-DFD method is more accurate and reliable than the referenced RANS and
DES methods. With the wall modeling technique, the LES-DFD method can be used to
simulate VIV problems on a relatively coarse mesh.

The effects of the plane channel walls on the VIV of the circular cylinder are exam-
ined under a selected reduced velocity Ur = 6.56, which is in the upper branch for the
unbounded flow. The amplitude of the cylinder vibration increases monotonically with
the non-dimensional height of the channel d∗ until d∗≈4. It is also shown that the proxim-
ity of the wall leads to some type of non-linearities in the cylinder response as evidenced
in the power spectra density of the lift coefficient and displacement. The vortex shedding
is suppressed by the channel walls. In addition, the vortices shedding from the cylinder
surface force the wall boundary layers to separate. For d∗= 2.6, 3.4 and 4, the length of
the induced separation zone in the boundary layers over the channel walls decreases as
d∗ gets larger.
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