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Abstract. In the present study, we extend the order-preserving (OP) criterion pro-
posed in our latest studies to the WENO-Z-type schemes. Firstly, we innovatively
present the concept of the generalized mapped WENO schemes by rewriting the Z-
type weights in a uniform formula from the perspective of the mapping relation. Then,
we naturally introduce the OP criterion to improve the WENO-Z-type schemes, and
the resultant schemes are denoted as MOP-GMWENO-X, where the notation “X” is
used to identify the version of the existing WENO-Z-type scheme in this paper. Fi-
nally, extensive numerical experiments have been conducted to demonstrate the ben-
efits of these new schemes. We draw the conclusion that, the convergence properties
of the proposed schemes are equivalent to the corresponding WENO-X schemes. The
major benefit of the new schemes is that they have the capacity to achieve high res-
olutions and simultaneously remove spurious oscillations for long simulations. The
new schemes have the additional benefit that they can greatly decrease the post-shock
oscillations on solving 2D Euler problems with strong shock waves.
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1 Introduction

Over the past several decades, the WENO methods [5-7,22-28] have received consid-
erable scholarly attention. The first WENO scheme that can obtain the designed con-
vergence order of accuracy was proposed by Jiang and Shu [22], dubbed WENO-JS. By
using the information of all 7-point substencils of the ENO scheme [1-4], WENO-JS main-
tains the ENO property near the region with discontinuities or large gradients and in the
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meantime achieves the designed convergence rates of accuracy. It was pointed out by
Henrick et al. in [29] that the fifth-order WENO-]S scheme can not recover the designed
accuracy at critical points of order n., = 1. For function g, one has ¢’ =0, g" #0 for n, =1.
Similarly, g’ =0, g =0, §"" #0 for n., =2, etc. Then, the sufficient condition for optimality
of the convergence rates of accuracy was derived in [33], and this sufficient condition
can be extended to higher order cases trivially [30]. In the work of Henrick et al. [29], a
mapping function, namely (¢M);(w'®), was designed and the resultant mapped WENO
scheme, dubbed WENO-M, can achieve the designed convergence properties even in the
presence of critical points. It is since the work of Henrick et al. [29] that the study of
different mapped WENO methods has gained momentum, and a series of new mapping
functions [30-32, 37, 38, 44] have been proposed by obeying the similar principles pro-
posed by Henrick et al. [29].

Later, the work of Henrick et al. [29] inspired the development of a new family of non-
linear weights, dubbed Z-type weights. From a different perspective, Borges et al. [33]
proposed another version of nonlinear weights by using available and previously un-
used information of the WENO-JS scheme. In other words, a global smoothness indica-
tor (GSI) of higher order, obtained via a linear combination of the original smoothness
indicators of the WENO-JS scheme, was proposed and employed to devise the new non-
linear weights. The resultant scheme was denoted as WENO-Z. Because of the success
of the WENO-Z scheme that its nonlinear weights can satisfy the sufficient conditions
for optimality of the convergence order without any costly mapping processes, leading
to superior results with almost the same computational effort of the WENO-JS method,
different researchers have developed a multitude of techniques to design their Z-type
weights [8-11,14,19-21, 39,45,46] by obeying the similar principles proposed by Borges
et al. [33]. In this paper, all the WENO schemes using Z-type weights is collectively called
WENO-Z-type schemes. We will give a brief review of several WENO-Z-type schemes in
subsection 2.3.

Despite the success mainly for short-output-time simulations, the family of mapped
WENO schemes has a serious and ubiquitous problem in calculations with long output
times, that is, they can hardly avoid spurious oscillations and meanwhile preserve high
resolutions for long simulations. This disadvantage in long simulations of the mapped
WENO methods was firstly noticed and carefully studied by Feng et al. [31] and it has
attracted considerable attention over the past decade [30, 32,34, 36,37,42,43]. However,
up to now, far too little attention has been paid to the long-output-time simulations of
the WENO-Z-type schemes. Indeed, our extensive calculations (see Subsection 4.3 be-
low) show that the WENO-Z-type schemes also terribly suffer from either losing high
resolutions or generating numerical oscillations on long-run calculations. Nevertheless,
undoubtedly, this issue is worthy of scholarly attention.

Accordingly, in this article, we would like to focus on the theme of addressing the
aforementioned drawback of the WENO-Z-type schemes. First of all, we give the impor-
tant observation and analysis of the implicit relationship between the nonlinear weights
of the WENO-JS scheme and the Z-type weights, denoted as IMR (standing for implicit
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mapping relation) for simplicity. It can be found that the profiles of IMRs for various
WENO-Z-type schemes are very similar to the traditional mapping curve (whose map-
ping function was specifically designed in the mapped WENO scheme and hence we call
it designed mapping for simplicity in this paper) that embrace evident optimal weight in-
tervals where the nonlinear weights are replaced by the ideal weights. It is well known
that this kind of replacements appears favorable for reducing the dissipation and im-
proving the resolution at least for short-output-time simulations. However, these re-
placements also generate the non-order-preserving (non-OP) points where the order of
the nonlinear weights is disrupted. It has been demonstrated [34, 36] that the non-OP
points are extremely harmful for the WENO schemes to preserving high resolutions and
meanwhile avoiding spurious oscillations for long-run calculations. In other words, the
enhancements of the WENO schemes with order-preserving mappings [34, 36] benefit
from the mapped optimal weight interval, in which the WENO weights are close to the
ideal weights, thus reducing the numerical dissipation and improving the resolution. On
the other hand, the order-preserving scheme ensures the order of the mapped nonlinear
weights near the shocks, so a more dissipative weight is used to reduce the numerical os-
cillations. Therefore, after advancing the new concept of the generalized mapped WENO
schemes by reformulating the non-normalized nonlinear Z-type weights in a uniform
form from the perspective of the mapping relation, the OP property is introduced to
modify the previously published WENO-Z-type schemes for the purpose of improving
their performance in long simulations. Necessary theoretical analysis will be provided
and extensive numerical experiments of 1D linear advection equation with various initial
conditions for long output times will be conducted and carefully discussed to examine
the enhancement of the new proposed schemes. In addition, we also carry out several
problems modeled via 1D and 2D Euler equations to show the good performance of these
schemes.

We organize the remainder of this article as follows. The preliminaries are reviewed
in Section 2, where we briefly recall the procedures of several typical WENO schemes,
including WENO-JS [22], WENO-Z [33] and some other WENO methods with Z-type
weights. In Section 3, the analysis of the Z-type nonlinear weights from the perspec-
tive of the mapping relation is given, and the concept of the generalized mapped WENO
schemes is proposed. The method to generally improve the previously published WENO-
Z-type schemes by requiring the use of the OP property is devised in Section 4, and some
examples of 1D linear advection equation are performed to manifest the major benefits
of the proposed schemes in this Section. In Section 5, more numerical results of 1D and
2D Euler equations are provided for illustration. The conclusions are given in Section 6.

2 Brief review of the WENO-Z-type schemes

It was reported [40] that there are three versions of the odd-order WENO methods with
r >3 when applied to hyperbolic systems. They are the classical WENO schemes (e.g.,
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WENO-JS [22], WENO-ZS [41], WENO-NIS [13]), the mapped WENO schemes (e.g.,
WENO-M [29], WENO-PMk [31], WENO-MAIMi [32], WENO-ACM [44]) and the WENO-
Z-type schemes (e.g., WENO-Z [33], WENO-Z+ [10], WENO-NIP [21]). As the version of
the mapped WENO schemes has been discussed carefully in our previous work [36], we
mainly describe the other two versions in this section. In other words, we first introduce
the classical WENO-JS scheme [22], along with the original WENO-Z scheme as designed
in [33] and then several WENO schemes with improved Z-type weights.

For simplicity but without loss of generality, we only pay our attention to uniform
meshes in this paper. However, the technique proposed in the present work can be natu-
rally applied to 2D/3D unstructured meshes and this is left for future study:.

For brevity’s sake, we restrict our discussion to the following 1D scalar equation
within the Finite Volume Method (FVM) framework

up+f(u)x=0. (2.1)

We assume that the computational domain is distributed into smaller uniform cells [; =
[Xj—1/2,Xj41/2), where Ax=xj,1/2—Xj_1/2 is the mesh width, xj11 2 =x;+ % are the inter-
faces of [; and x; = %(xj+1/2+xj—1/2) are the cell centers. Let

_ 1 [¥e
u(xj,t):A—x/x u(n,t)dn,

i-1/2

we can transform Eq. (2.1) into the semi-discretized form

dt L ) 2.2)
L(uj)= T Ax (fj+1/2_fj—1/2)/

where iij(t) is the approximation to #(x;,t), and fjﬂ n=f (u]._jEl /2/”]11 /») is the numerical
flux used to replace f(u). The WENO reconstruction techniques are used to calculate the
u®,, .. We will choose the global LF flux in this article.

j£1/2
1/
of u].il /, 1s symmetric to it with respect to xj;1/2. And for brevity, the “—" sign in the
superscript will be dropped without causing any confusion.

Remark 2.1. In the discussion below, we only show the reconstruction of u;_, ,, as that

2.1 WENO-JS
In the 5th-order WENO-JS, 11, is approximated by

_ 0 1 2
Uj1/2 = W0l 1 jp F W1l 1 jp T WG/, (2.3)
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with
uﬁHJZ::%(2a¢2-—7af,y+11ap, (2.4a)
”]1+1/2: %(_ﬁjfl+5ﬁj+2ﬂj+1)/ (2.4b)
”]2+1/z: %(2ﬁj+5ﬂj+1 —iljy2), (2.4¢0)
and (for s=0,1,2)
WS = “? s_ 4 (2.5)

4 “ 7
Liowy T (e4B)

where € is a small positive number, dy = 11—0, dy= %, dr = 1%. In [22], Bs, dubbed LSI, are
explicitly given as follows

13 1

Bo= iR (L_l]'_z —21/7]'_1 +L—t]')2+ 1 (1/7]'_2 —4L_lj_1 +3ﬂ]‘)2,
13 1

=15 (1 —21«7]‘+ﬂj+1)2+ 1 (1 —ﬁj+1)2,
13 1

B2 = iR (ﬂj =214 —|—1/_l]'+2)2—|- 1 (312]' —4ilj +1/_l]'+2)2.

It was indicated by Henrick et al. [29] that the convergence rates of accuracy of WENO-JS
may drop to 3rd-order at critical points. In the same article, they indicated that to ensure
the overall scheme retaining fifth-order accuracy, it is sufficient to require

wE—d;=0(Ax3). (2.6)

2.2 WENO-Z

Borges et al. [33] devised the first WENO-Z-type scheme, dubbed WENO-Z. By introduc-
ing the GSI, say, 75 =|Bo— B2/, they compute the nonlinear weights by

V4
z o z T \F >
wh=—"5—_  af=d,(1+ , s=0,1,2, 2.7
oYioer OV S( (5s+e) @7)

where the parameters s and € are the same as in the classical WENO-JS scheme, and p is
a tunable parameter. Borges et al. demonstrated that [33], if p =1, the WENO-Z scheme
only achieves fourth-order convergence orders in the presence of critical points; if p =2,
it can recover the designed 5th-order convergence rates. Unless indicated otherwise, we
choose p=2 in the present study.
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2.3 Other WENO-Z-type schemes

The significant contribution of WENO-Z is the inclusion of higher-order information by
introducing the GSI, 75, in the definition of the nonlinear weights. This helps the WENO-
Z scheme get closer to the central scheme than the WENO-JS scheme and hence generate
less dissipation. The formation of the nonlinear weights of WENO-Z gives an effective
way for enhancing the capacity of WENO-JS. Thus, by obeying the similar principles
of WENO-Z, a series of new Z-type nonlinear weights with various kinds of GSI are
proposed. In this subsection, we briefly review other WENO schemes with different Z-
type weights that will be further studied in the rest of this paper. It should be noted that
there are so many different types of WENO-Z-type schemes [8-11,14,19-21,33,39,45,46],
and we only considered a limited number of them just for illustrative purposes in the
present study:.

WENO-Z7(7;): Fan et al. [8,39] proposed the WENO-Z#(7;) scheme with the follow-
ing Z-type nonlinear weights

Zy 2
e a1+ (L)), s—012 @8
Y=o Tsre€

where the LSl is calculated using the flexible and simple formula suggested by Shen and
Zha [50], and we state them explicitly here

1

o= 1 (L_l]'_z —4L_l]‘_1 —|—3I/_l]')2—|— (L_l]‘_z —21/_1]‘_1 —|—I/_l]')2,
1

=g (Goa =)+ (8- 20+ 510)°, (2.9)
1

2= 5 (31t 4+ i)+ (7= 2 +742) "

Fan et al. [39] proposed a fifth-, a sixth- and two eighth- order GSIs as

_ Hot+4m -+
6

o= (IR |14 (7 <2p+27) |

2 2
= (1P P+ (P27 22’

7

(
5=no—12|, Te= ’175

where

1

_ _ _ _ 2 _ _ _ _ _ 2
5= Ti1 <(uj2 —81/[]',1 +8buj+1 —Mj+2) + (uj,2—16uj,1 —|—30u]‘—16u]‘+1 +u]‘+2) >,
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and 1 3
Pél)ziﬁj,z—Zﬂjfl-Fiﬂjz péz):gj_z—Zﬁj_l +1;,
P = —%am +%aj+1, P =1 =20+ 01,
PV = _gﬂj+2ﬁj+l - %am, B =8 =201+ 1.

WENO-Z+: Acker et al. [10] proposed the WENO-Z+ scheme with the following Z-
type nonlinear weights

Z+ 2
Zr_ % Z+ _ T5+€> <,5s‘|‘€>> _
w ———, as =ds| 1+ +A , §=0,1,2, 2.10

where A is recommended to be Ax2/3 in their work.
WENO-ZA: Shen et al. [14] proposed the WENO-ZA scheme with the following Z-
type nonlinear weights

ZA A
C(JSZA 0‘5 ’ “sZA:ds ( % )/ 52011/2/ (211)
Zl leZA ﬁs

where the LSl is defined by

Be=m(@V) +72(aP)?, s=0,1.2, 2.12)
with
) = (1;_p—4; 1+31,)/2, ) =a;_p—2m; 4+,
") = (—1j_1+11111) /2, 1 = 2+, (2.13)
é):( =311 +4ij41—1j12) /2, aéz):’/_‘j_ZﬁjH‘f'ﬁjJrz-

In Eq. (2.11), the parameter A is recommended as

To

A= ————— 2.14
Bo+B2—T6+€ @14
With 1 1 2 2 2 2

=1 (g | 135" ) 2 (ja | - [ad]) 2. (2.15)

According to the recommendation of Shen et al. [14], 71 =1, 72 =13/12 are used.
WENO-D/WENO-A: Wang et al. [20] proposed WENO-D and WENO-A with the

following Z-type nonlinear weights

DCD T5 P
WENO-D: wP = 25 , sz:ds<1+cI>< ))

=0 , s=0,12, (2.16)
WENO-A: wh=_1 B =d, <max <1 @ < > > )
Z —0% ﬁs +e€

2 A’
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where p =2 is used in their numerical examples, and 15 =By — 2|, P is computed by

O=min{Lp}, ¢=1/|Bo—2B1+p2| (2.17)

WENO-NIP: Yuan [21] proposed the WENO-NIP scheme with the following Z-type
nonlinear weights

wyﬂ’:%, NP — g, (1+T), 5=0,12, (2.18)
Yo% (e+xs)?
where
X0:9’L_l]‘_2—3b_lj_1 +217£]"—|—|L_lj_2—212]'_1+12]' , (2.19a)
Xl:Q‘ﬁj+1—ﬁj‘+‘ﬁj71—2ﬁj+ﬂj+1 , (2.19b)
X2 =01 — 1|+ | — 241 +1lj42], (2.19¢c)
and

T= |L_l]'_2 —411]'_1 +61/_l]' —411j+1 +1/_l]'+2|].
As mentioned in [21], the requirement | > % needs to be satisfied. According to Yuan’s
solutions [21], 6 =0.1 seems to be a better choice.

3 Study on the Z-type weights from the perspective of the
mapping relation

It is well known [29,30,32,33,44] that the WENO-JS scheme can not achieve the designed
convergence order at critical points, and there are usually two ways to address this is-
sue: one is to introduce a mapping function [29-32,37, 38, 44], the other is to introduce a
GSI [10,14,20,21,33,39]. Recently, the long-run simulations of the mapped WENO meth-
ods have been widely concerned [30-32,34,36,37,43]. The mapped WENO methods have
one great drawback in common that it is very difficult to get high resolutions and remove
spurious oscillations simultaneously for long-run simulations and many researches were
devoted to amending it. However, any researches hardly focused on the performances of
the WENO-Z-type schemes for this topic. In this study, this will be studied and discussed
carefully. Actually, our numerical calculations indicate that the drawback of long-run
simulations mentioned above also exist for the WENO-Z-type schemes. From Figs. 4-7
below, we can see that most of the existing WENO-Z-type schemes suffer from either los-
ing high resolutions or generating spurious oscillations. This issue will be addressed in
this paper.

In practical calculations, for any output time ¢, we can calculate uniquely the Wl
of each location x; according to Eq. (2.5). And also, for any WENO-X scheme, we can
uniquely get its nonlinear weights, say w, according to its nonlinear weights formula,
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like the formulae of the various Z-type weights as shown in Subsection 2.3. Trivially,
although no mapping function formula of wX(wk®) for WENO-Z-type schemes was ex-
plicitly given in previously published literature, the relation of W ~wXis uniquely deter-
mined. Thus, we call it Implicit Mapping Relation (IMR) of the WENO-X scheme. Indeed,

one also can treat w) as a function of wgs as stated in Eq. (3.3) below.

Example 3.1 (SLP). The following Linear Problem proposed by Shu et al. in [22], de-
noted as SLP, is widely used to examine the performance of high resolution schemes. It
is defined by

urtu,=0, —-1<x<l, (3.1)
u(x,0)=up(x).
Let
2 2 2 y)?
G(x,ﬁ,z):exp<—ﬁ(x—z) ), F(x,zx,a):(max(l—oc (x—a) ,O)) ,
and the initial condition uy(x) is given as
1 A A
6[G(x,,B,z—(S)+4G(x,,3,z)—|—G(x,ﬁ,z—|—5)}, —0.8<x<—-0.6,
1, —04<x<-0.2,
up(x)=4{ 1-[10(x—0.1), 0.0<x<0.2, (3.2)

1 A A
A [F(x,0,a—0)+4F (x,a,a)+F(x,a,a+0)], 04<x<06,

0, otherwise,

. 1 g1 __ 7 = 2
witha=3,a=10,0=55,z=—1; andﬁ—10g3652~

Taking SLP as an example, by choosing t =2000 and N =800, we plot the IMRs of the
WENO-Z, WENO-Z# (15), WENO-Z# (131), WENO-Z+, WENO-ZA, WENO-D, WENO-A
and WENO-NIP schemes in Fig. 1. For comparison purpose, we also plot the designed
mapping of WENO-JS, or say identity mapping, and that of WENO-M. It is very interest-
ing that the IMRs of all the considered WENO-Z-type schemes are similar to the designed
mapping of the WENO-M scheme in general. In other words, it is quite obvious that
there are “optimal weight intervals” where the mappings, as well as the Z-type weight
formulae, replace the nonlinear weights using the associated ideal weights. We refer to
Subsection 3.4.2 of [32] for more details about the “optimal weight intervals”. As far as
we know, these features are not accounted for in previously published articles. However,
it is indicated that [30, 32, 43] the optimal weight interval plays a crucial role in recover-
ing the designed convergence orders in the presence of critical points and improving the
resolution of the corresponding WENO scheme. Therefore, based on this meaningful ob-
servation, we innovatively build the concept of Generalized Mapped WENO schemes.
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Figure 1: The IMRs for various WENO-Z-type schemes.

Definition 3.1 (Generalized Mapped WENO scheme). If the IMR of WENO-X exhibits the
key characteristic of the traditional mapped WENO scheme, that is, existing apparent optimal
weight intervals,we say WENO-X is a Generalized Mapped WENO scheme.

In fact, the various Z-type weights can be written in the following generalized form

X
14
w s

X
s

2 7
Yot

ch(:lpgfl(ds)—k

ds/ (BY +€)?

2 JS
1=0%]

= ’7”51 (ds) +wgs'¢’§2(ds) +’:bg(,3(ds)r

X5 (ds)+9X5(ds)

s=0,1,2,

(3.3)

where the ), (ds), ¥X,(ds), and ¢5(ds) can be obtained trivially by some simple mathe-
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Table 1: lp;fl(ds), lp;(,z(ds), and lp;f3(ds) of various Z-type weights.

Scheme, WENO-X ¢, (ds) lpgfz (ds) 1p§f3 (ds)
WENO-Z ds Y2 012 . 0
WENO-Z#(15) ds Y2 e (s +€)2 2 0
(’7}58 +€)
2 35 (Bs +e€)?
WENO-Z7 (t31) ds Yol - m T 0
S Bs+e
WENO-Z+ ds Y2 o0 (15+€)? ds-A ( T; — )
IS
WENO-ZA ds Y2 oalS. Eﬁz A*fg At 0
WENO-D d; 2122011? oL (B 4e)2 P 0
WENO-A ds-B Y7 a0l -]gﬁ£5+e)2—r’(1 ~B) 0
+€)?

WENO-NIP d 2 g5 (Bre) 0

s Yo% T (xs 1)

P
(1) B=BOOL (max (1,<I> (:B Tj_g) ) = 1) , ® is computed by Eq. (2.17);
S

(2) the other parameters are the same as in Subsections 2.2 and 2.3.

matical manipulations. As examples, we provide the l[Jgfl (ds), w;fz(ds), and l[);f?)(ds) of the
WENO-Z, WENO-Z# (15), WENO-Z (131), WENO-Z+, WENO-ZA, WENO-D, WENO-A
and WENO-NIP schemes in Table 1.

Furthermore, we give a uniform formula of the nonlinear weights of all three versions
of the odd-order WENO schemes, taking the form

X
W=y, 5012,
Li—0% (34)

X = (M) (cd) =% (de) + HX () 9 (de) +92% (d),
where w/ is the nonlinear weights of some classical WENO scheme, and w =w!l is used
usually. Also, 1/J;fi(ds), i=1,2,3 and H*(w)) can easily be obtained. As examples, we
provide the ¢;(ds), i =1,2,3 and H*(w{) of the WENO-JS, WENO-M, WENO-Z and
WENO-Z+ schemes in Table 2.

Definition 3.2 (Generalized Mapping Function). We call (§"™MX)s(wY) in Eq. (3.4) the Gen-
eralized Mapping Function of WENO-X, and for simplicity, (§MX)s(w) is used without causing
any confusion.

Remark 3.1. It can be observed that the 1/J;fz(ds) is still complex. However, the primary

purpose of rewriting the Z-type weights in the form of Eq. (3.3) or (3.4) is just to explain

the fact that one can treat w) as a function of w’® and then to introduce the definition
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Table 2: ¢,(ds),i=1,2,3 and H*(wY) for WENO-JS, WENO-M, WENO-Z and WENO-Z+.

Scheme, WENO-X w) ¢X (ds) 95 (ds) ¥X5(ds) HX(w),ds)
WENO-JS 0 1 0 wY

WENO-M W d 1 0 ( gM) (w)), see [29]
WENO-Z WP dy Y2 012 0 wY

WENO-Z+ WP dy Y2 o0l (t5+€)? ds-A (Q;jg > wY

3.2 leading to a concise description of Algorithm 1 below. It should be noted that one
can use a much simpler form of Eq. (3.3) or (3.4) without performing ¢, (ds) in practical
programming.

Corollary 3.1. If WENO-X is a traditional mapped WENO scheme, then its generalized map-
ping function is exactly its designed mapping function; if WENO-X is a WENO-Z-type WENO
scheme, then its generalized mapping function is the non-normalized form of the associated IMR.

The proof of Corollary 3.1 is very trivial and we omit it here just for the sake of brevity.

4 Design and properties of WENO-Z-type schemes with
order-preserving generalized mappings

4.1 The new WENO-Z-type schemes

In order to provide convenience to the reader and clarify our major concern, we firstly
restate the following notations and preliminaries, originally proposed in [36], that will be
needed for the present study.

Definition 4.1. Construct the Min_DIST function taking the form

Min_DIST (UO,' ©,Up—1,W0," /(Dr—l;w) =0,
: : _ _ (4.1)
I* =min | INDEX mm{]w—wo|,---,|w—wr_1|} ,

where @ stands for the ideal weight and

INDEX(min{|w—cDo|,---,|w—a7r1|}> - {ql,---,qM}, (4.2)

min { @ —@ol, -+ Jw—@r1] | =|w—dg| =+ =]w—ay, |
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Definition 4.2. Denote S ={do,--,d,_1} and S= {dAo,- . ,dAr_l}, and they satisfy:
(1) the elements of S and S are only different in turn;

(2) 0<do<---<d,_1<1.
Let

we define

@\:{(@)Ow--,(@)r1<w>},

—

where (§5MX) (w) is computed by substituting ds into the corresponding ( M) (w).

Lemma 4.1. Assume dA_l =0, dAr =1, and denote d_, :dA_1,d}) = (dAo—l—c?l) /2, dp_p= ((JT,,Z—i—
dr—1)/2,d,_1 =d,, then we have

min <INDEX(min{\w—dAO‘,...,\w—cfr1\})) =j for Ywe (d;_q,d;].

Proof. We refer to the proof of the Lemma 3 in [36]. O
Lemma 4.2. Let
Q= {w|Min DIST(do, -+ d1;d, -y 1;0) =di }

and a,b€{0,1,---,r =1}, if a>b, then for Vw, € Oy and VYwg € Oy, one can get

Cl1. Ql‘ = (diflrdi];

C2. wy >wl;,c?0é > c/l\ﬁ;

—_—

C3. (§MX) (wa) > (§EMX), (wp)-

Proof. According to Definition 4.1 and Lemma 4.1, we can prove Cl1 trivially. As a>b,
then (), is on the left of (). It is already given that w, € Qq,wp €y, 0

Wy > wg, dA,,( > dAﬁ (4.3)
Thus, the C2 is proved.
The proof of C3 is case by case. For simplicity but without loss of generality, we
present the proof for the case of “WENO-X = WENO-Z” as an example. According to
Eq. (3.4), we can get

(9M2), (cn) = 97 (do) + HE ) -2 () + 95 (A, (442)
(85MZ) ,(wp) =y (dp) +H* (wp,dg) - 95 (dp) + 95 (dp). (4.4b)
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From Table 2, we can obtain

HZ (wa,dy) = we, Hz(wﬁ,@):wﬁ, (4.5a)
i (da) =da, wz@ziﬁ, (4.5b)
ACRETACT Za 2 >0, (4.5¢)
5 (dy) =95 (dg) =0. (4.5d)

Then, from Egs. (4.3), (4.4) and (4.5), we get

(§7), (wa) > (§5V2), (wp)-

Thus, C3 for the case of “WENO-X = WENO-Z" is proved. The other cases can also
be proved analogously and they are omitted here to save space. Actually, from Fig. 2
below, it can be intuitively observed from the IMR curve of MOP-GMWENO-X, where
MOP-GMWENO-X stands for the new WENO-Z-type scheme derived from the WENO-X
scheme taking the OP property and we will present it in the following. O

It has been reported [34, 36] that the OP property of the mapping plays an essen-
tial role in preserving high resolutions and meanwhile avoiding spurious oscillations for
long-run calculations. Now, we extend the concept of the order-preserving mapping (see
Definition 2 of [34] or Definition 1 of [36]) to the generalized mapping function as follows.

Definition 4.3. For Vm>n, and w;, € Oy, wy, € Oy, if

M), (wr,) > (M), (wi,), (4.6)

(g

lm

then the set of generalized mappings { (§“™MX) J(w),s=0,---,r—1} is called to be order-preserving
(OP) mapping. Otherwise, it is called to be non-order-preserving (non-OP) mapping.

In Algorithm 1, we introduce the OP property into the previously published WENO-
Z-type schemes whose generalized mappings are non-OP. Before giving Algorithm 1, we

rewrite the generalized mapping (§“™*) (w) defined in Eq. (3.4) in a more meaningful
form

(gGMX) s (wls) = 8GMX (wgs}ll’s,l,ll]s,z,%s) . (4.7)

Theorem 4.1. { (gMOP~CMX) (w 1%),5=0,1,---,r—1} computed by Algorithm 1 is OP.

Proof. Without loss of generality, assume w],,f ,w{ls €10,1] and w]n? €y, wlzs €();, then

(gMOP—GMX)m(wJIS):gGMX(a)m,l[)l* 1Y 2%, 3)

_ S
(gMOP GMX)n(w{1 ) =gOMX (wn ;¢l:,1,¢1;,2,¢1;,3)-



216

1O wenoss [identity] 7 0F _ wnous identity] b 1O wenoas [identity]
09 —g)(@),d,=01 0 @ d=01 4 09 —g(@.d,=01 o ®)d=01 4 09+ ——g(@).dy=01 O w)d=01
08} —&'@.4,-06 o ®}d =06 4 08l —&'@.4,-06 o ®fd=06 4 08 | Mw).d =06 o ®}d=06
v M), dy=03 A 0¥ d=03 —(@).d,=03 A oY d=03 — @), d,=03 A 0¥ d=03
Eas & (0).dy 2y 1z o} 2 (@), d, =0, %, d,=0 12 o7} &3 (0).dy=0. ®%,d,=0.
=y 2 2
2 osf 12 ost 12 osp
g L 4 = L 5 4 L
B 05 —a g § 05 ’ o@/ | ocow®mey E 05 | oo
E 04 g —é 04 ' A g —é 04
Z A —— | Z £ wp—] Z ospatse———
03} R 03} p 03 1
T 5 oo g o
02 4 02 N 4 02 f
n/ ALY
01} 4 01} ! 4 01+ i )
bo g
0.0 | 010 oi% 0@ 0@ A 00| 01F TIE 0R0 0AT A 0.0 0% 0T 020 027
o T P S i T PR i il S
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 O 1.0 00 01 02 03 04 05 06 07 08 O 1.0
oS N oS
X =MOP-GMWENO-Z+ X =MOP-GMWENO-ZA X =MOP-GMWENO-D
— T T T T T T — T T T T T T — T T T T T T
10 WENOJS fidentity] 1 1O WENOUJS fidentity] 7 O WENOJS fidentity]
09 —g)(@).d,=01 o @) d=01 B 09 F —g)(@.d,=01 0 @kd=01 B 09 F —g)(@).dy=01 0 @) d=01
08k 2 (o).d =06 o w).d=06 ] 08l (@), d,=06 0 wYd=06 ] 08k &M (@).d =06 o ®}.d =06
— @), d,=03 A 0¥ d=03 — @), d,=03 A o — @), d,=03 A @ d=03
2 orp T &@% o4 1 g o7} —g@a w¥d, | 2 o} —g@u o34,
£ 2 ey
S 06 4 2 o6f 42 o6f
= = =
g o05f 4 § o05p 4 § o5
L e | e oeq  ——]
g 8 8
E o4f 4 E o0ap 1 E o4f
| oA
“ o3} “ o3} 1% oaf
L = 4 4 L L
02 7 02 P 02 N
01+ | 1 01t B | B 01 *
om t/ =] o
0.0 | o T 205 A 0.0 [ A 00| 01 TH T2
e T o, TTETE T, L P P
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
N S oS
X =MOP-GMWENO-A X = MOP-GMWENO-NIP
P L e e ———
T —— WENO-JS [identity] 1 wor _w;ND'JS [idw‘mﬂ Ca—or T
09} —gM@.d-01 O wlhd-01 1 09} T & (@d 8 @0 dp=0 p
J— - Xa-
08l —&@.d=06 o ®}d=06 i 08l g):(‘”)‘”‘ 0o O @id=06 |
. &= X 4=
@ @).d,=05 & 0Xa-09 ” &(@.4,=03 4 @%d=03 o
£ o7t > 12 orf B
e =)
o L 4 B L 4
= 0.6 = 06
g o5f m/ 1§ ost / —vh
g il
= o4l ! | 1 E oaf 1
> : z
; , ha—a
“ o3t y 5 ] 03| |
g ot -
02f ~ 2 g 02 f 4
0.1} 4 01 4
o 1)
0.0 - T B 0.0 e A
S S S S R S WY o, YTTETE
00 01 02 03 04 05 06 07 08 09 10

X =MOP-GMWENO-Z
— T T T T

R. Liand W. Zhong / Adv. Appl. Math. Mech., 15 (2023), pp. 202-243

X = MOP-GMWENO- Zn(t5)

X = MOP-GMWENO- Zn(tg)

T T

T T

T T

00 01 02 03 04 05 06 07 08 09 10
S

(HIS

Figure 2: The IMRs for various MOP-GMWENO-X schemes.

Trivially, we have

gOoMX (w;]ns}l,bl;,llll?l;,,zl%;s) = (gGMX)l:n (wh),

. — S
gGMX (wL ;¢,:,1,¢l;,2,tpz;,s) = (SGMX)Z;(“’L

).

Up to now, the proof can be finished easily as Lemma 4.2 holds true.

w

Now, we give the improved Z-type weights satisfying the OP property by

MOP-GMX _

alS\/IOPfGMX

S
1=0 %

- 27’—1 MOP-GMX”’

o MOP—GMX _

(gMOP—GMX)S(w£S), §=0,---

=

1, (4.8)
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Algorithm 1: The method to get new Z-type weights satisfying OP property.

input :s,d;, wls, Psm withm=1,2,3
output: the new OP generalized mappings, namely

{ (gMOPfGMX)S(wgs), s=0,1,- ..,7_1}

Juy

GMX) (w) is a generalized mapping function, { (¢“MX) (w), s=0,1,---,r—1} is
8 s & ppmg g s
non-OP;

2 sets=0;
3 whiles<r—1do
4 compute wls;
5 setjzl,dMIN:\wgs—d0|,l5*:0;
6 | whilej<r—1do
7 while _dMIN < wls — d] < dMIN do
8 dMIN:|wlS_dj|}
9 I =j;
10 end
11 j++
12 end
13 setm=1,
14 while m <3 do
15 @s,m = 11015*/'”’.
16 m—++;
17 end
18 S++;
19 end
20 sets=0;

21 whiles<r—1do

_ s STTIRT T
(SOP) () =g (w7, 9,25 )
S++;

24 end

22

23

where (gMOP~GMX) (%)
MOP-GMWENO-X.

In Fig. 2, we plot the profiles of the generalized mappings. It can be seen that, for the
improved WENO-Z-type schemes:

is determined by Algorithm 1 and the resultant scheme is named

(1) the OP property is obtained in general;

(2) the widths of the “optimal weight intervals” are decreased compared to the WENO-
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X schemes.

Next, we conduct numerical examples to show the convergence properties of the MOP-
GMWENO-X schemes.

4.2 Convergence at critical points

Since Henrick et al. [29] pointed out that the WENO-JS scheme achieves only third-order
convergence rate of accuracy at critical points of smooth solutions, it has become a focus
of discussion [30-34,36-38,44].

We compute the function f(x) = x3+cos(x) to test the convergence property of the
MOP-GMWENO-X schemes at critical points. It is trivial to know that f,_,=0and f]" ,#
0. For comparison purpose, the WENO-X schemes, as well as WENO-JS and WENOS5
using ideal linear weights (denoted as WENOS-ILW in this paper for simplicity), are also
conducted.

Table 3 shows the L, convergence behaviors for the considered schemes at the critical
point x=0. As expected, the WENO-]JS scheme only gets third-order accuracy. It should
be noted that, in this test, the WENO-Z+ scheme can also only obtain third-order accu-
racy (in consistency with the results reported in [10]), leading to the fact that the MOP-
GMWENO-Z+ scheme only gets third-order accuracy. Moreover, the WENO-JS, WENO-
Z+ and MOP-GMWENO-Z+ schemes obtain the errors of at least 4 orders of magnitude
larger than those of the WENO-ILW scheme. The other WENO-X schemes, say, WENO-Z,
WENO-Z(15), WENO-Z1 (131 ), WENO-ZA, WENO-D, WENO-A, WENO-NIP, and their
MOP-GMWENO-X schemes can get fifth-order accuracy, but only the WENO-Z(7s1),
WENO-ZA, WENO-A, WENO-NIP schemes, and their MOP-GMWENO-X schemes, can
obtain the errors with the same order of magnitude as those of the WENO-ILW scheme.
The errors generated by the WENO-Z, WENO-Z#(15), WENO-D schemes, and their
MOP-GMWENO-X schemes, are about 3 orders of magnitude larger than those of the
WENO-ILW scheme. It is worthy to note that all the new WENO schemes perform simi-
larly as the WENO-X schemes for this test.

4.3 Long-run simulations of 1D linear advection equation for comparison

4.3.1 With high-order critical points

For the purpose of demonstrating the improvement of the new WENO schemes that they
can preserve high resolutions for the problem with high-order critical points at long out-
put times, we perform the following test.

Example 4.1. We compute
u+u,=0, x€(7.5,10.5),

with the following initial condition

u(x,0) =exp (— (x—9.0)"") cos’ (7(x~9.0) ). (4.9)
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Table 3: Convergence rate of accuracy at the critical point.

WENOS5-ILW WENO-JS WENO-Z MOP-GMWENO-Z
Ax Error Order Error Order Error Order Error Order
0.0125 2.72851e-11 - 3.5768%e-06 - 5.36240e-08 - 5.36245e-08 -
0.00625 1.11260e-12  4.6161  3.64804e-07 3.2935 1.14381e-09  5.5510  1.14381e-09 5.5510
0.003125 | 3.47692e-14  5.0000 3.81177e-08 3.2586 2.50723e-11 55116  2.50723e-11 5.5116
0.0015625 | 1.08654e-15 5.0000 3.99276e-09 3.2550 5.58613e-13  5.4881 5.58613e-13 5.4881
WENO-Z1(15) MOP-GMWENO-Zy(15) WENO-Z#(7s1) MOP-GMWENO-Z7 (1g1)
Ax Error Order Error Order Error Order Error Order
0.0125 5.23932e-08 - 5.23937e-08 - 3.50808e-11 - 3.65801e-11 -
0.00625 1.11430e-09 55552  1.11430e-09 5.5552 1.11260e-12 49787  1.11260e-12 5.0391
0.003125 | 2.43877e-11 55138 2.43877e-11 5.5138 3.47692e-14  5.0000 3.47692e-14 5.0000
0.0015625 | 5.42433e-13  5.4906  5.42433e-13 5.4906 1.08654e-15 5.0000  1.08654e-15 5.0000
WENO-Z+ MOP-GMWENO-Z+ WENO-ZA MOP-GMWENO-ZA
Ax Error Order Error Order Error Order Error Order
0.0125 6.57316e-07 - 6.57315e-07 - 1.07615e-10 - 1.08743e-10 -
0.00625 8.77288e-08  2.9055  8.77288e-08 2.9055 1.50193e-12  6.1629  1.50193e-12 6.1780
0.003125 | 1.08696e-08 3.0128  1.08696e-08 3.0128 3.69247e-14 53461 3.69247e-14 5.3461
0.0015625 | 1.29563e-09  3.0686  1.29563e-09 3.0686 1.09865e-15 5.0708  1.09865e-15 5.0708
WENO-D MOP-GMWENO-D WENO-A MOP-GMWENO-A
Ax Error Order Error Order Error Order Error Order
0.0125 5.36240e-08 - 5.36245e-08 - 3.62665e-11 - 3.67745e-11 -
0.00625 1.14328e-09 55516  1.14328e-09 5.5516 1.11260e-12  5.0266  1.11260e-12 5.0467
0.003125 | 2.50723e-11 5.5109 2.50723e-11 5.5109 3.47692e-14  5.0000 3.47692e-14 5.0000
0.0015625 | 5.58613e-13 54881 5.58613e-13 5.4881 1.08654e-15  5.0000  1.08654e-15 5.0000
WENO-NIP MOP-GMWENO-NIP
Ax Error Order Error Order
0.0125 3.56050e-11 - 3.56511e-11 -
0.00625 1.11264e-12  5.0000 1.11264e-12 5.0019
0.003125 | 3.47695e-14 5.0000 3.47695e-14 5.0000
0.0015625 | 1.08654e-15 5.0000 1.08654e-15 5.0000

Here, we set CFL = (Ax)?/3.
To compare the dissipations, the following L; and L« errors are computed

Li=hY N ‘u‘f"ad— (up)il, (4.10a)
Leo= max ‘usxm— ()i, (4.10b)

where N is the number of the cells, & the mesh size, (u,); the computing result and ufxaCt
the exact solution that can be easily computed by

u(x,t)=exp (— ((x—t)—9.0)10) cos’ (n((x—t)—9.0)).

For the scheme “Y”, its increased errors compared to WENOS5-ILW are also been com-
puted by
LY(t)—LIEW(¢ LY, (t)—LIEW(¢
= HOZLO o, O L)
LILW () " ()

where LI'W(#) and LILW(#) stand for the L; and L errors of WENO5-ILW respectively.

% 100%,
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In Table 4, we show the results computed by considered schemes with N =300 and
t =300,600,900,1200. It can be seen that: (1) WENO-JS produces the largest L; and
L errors, leading to the largest increased errors, among all considered schemes for
all output times; (2) the WENO-Z, WENO-Z#(15), WENO-Z+, WENO-D and WENO-
A schemes also generate very large L1 and Lo, errors, although slightly smaller than the
WENO-JS scheme, and their associated increased errors are extremely large naturally; (3)
however, the MOP-GMWENO-Z, MOP-GMWENO-Z# (15), MOP-GMWENO-Z+, MOP-
GMWENO-D and MOP-GMWENO-A schemes can significantly decrease the increased
errors to a tolerable level, as they can achieve much smaller L and L, errors that actually
get very close to that of WENO-ILW; (4) moreover, the MOP-GMWENO-Z7 (51 ), MOP-
GMWENO-ZA and MOP-GMWENO-NIP schemes can also ensure that their L1 and L
errors get close to that of WENO-ILW, and thus their increased errors are also at a tol-
erable level. It seems that the WENO-Z# (151), WENO-ZA and WENO-NIP schemes can
get solutions almost as accurate as, or even more accurate than, that of WENO-ILW, and
this is good for this test. However, it should be pointed out that these schemes may suf-
fer from lack of robustness as their dissipations are too small for long-run calculations.
Indeed, we will demonstrate this in detail by numerical examples below.

Fig. 3 shows the solutions at t =1200. For comparison purpose, we also plot the re-
sults computed by the WENO-JS [22] and WENO-M [29] schemes. From Fig. 3, it can be
observed that: (1) WENO-JS shows the lowest resolution, followed by WENO-M; (3) the
WENO-Z, WENO-Z#(15), WENO-Z+, WENO-D and WENO-A schemes also show very
low resolutions but the improved MOP-GMWENO-X schemes can significantly improve
the resolutions; (4) the resolutions of MOP-GMWENO-Z#(151), MOP-GMWENO-ZA
and MOP-GMWENO-NIP are slightly smaller than that of the WENO-Z#(tg1), WENO-
ZA and WENO-NIP schemes but they are still far better than the WENO-JS, WENO-M,
and the other WENO-Z-type schemes.

4.3.2 With discontinuities

To examine the major benefit of the new schemes that they are able to achieve high reso-
lutions and meanwhile avoid spurious oscillations for long-output-time simulations, we

solve 5 3
u u
{ §+$—0, —1<x<1,

u(x,0) =uop(x),
with two different uo(x).

Example 4.2 (Case 1). The initial condition uy(x) is computed by

up(x)= (4.11)

1, —1<x<0,
0, O<x<«l1.

This problem simply consists of two constant states separated by sharp discontinuities at
x=0.0,£1.0.
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Table 4: L1, Lo errors and the increased errors (in percentage) on solving Example 4.1.

WENOS5-ILW WENO-JS

Time, t L, error X1 Lo error Xoo L1 error X1 Lo error Xoo
300 5.39974E-03 - 8.81363E-03 - 7.93589E-02  1370%  1.34321E-01  1424%
600 9.94133E-03 - 1.50917E-02 - 2.10016E-01  2013%  3.04860E-01  1920%
900 1.38061E-02 - 1.96281E-02 - 2.84632E-01  1962%  4.20080E-01  2040%
1200 1.74067E-02 - 2.39652E-02 - 3.26687E-01  1777%  5.14072E-01  2045%

WENO-Z MOP-GMWENO-Z

Time, ¢ Ly error X1 Lo error Xoo Ly error X1 Lo error Xoo
300 3.56420e-02  560% 1.23424e-01  1300%  1.18556e-02 120%  2.21312e-02 151%
600 8.58998e-02 777%  2.36754e-01  1530%  1.56335e-02 60% 2.43793e-02 68%
900 1.13762e-01 726% 2.77206e-01  1324%  2.57924e-02 87% 3.33097e-02 71%
1200 1.27002e-01 631%  2.78133e-01  1070%  2.51627e-02 45% 4.06869e-02 71%

WENO-Z1(15) MOP-GMWENO-Z# (15)

Time, ¢ Ly error X1 Lo error Xoo Ly error X1 Lo error Xoo
300 4.52391e-02 738% 1.14337e-01  1197%  1.16734e-02 116%  2.42074e-02 175%
600 9.44265e-02 864%  2.36673e-01  1530%  1.56751e-02 60% 2.51991e-02 74%
900 1.09605e-01 695%  2.12852e-01 993%  2.52547e-02 83% 3.20434e-02 65%
1200 1.38434e-01 697%  3.05553e-01  1185%  2.15191e-02 24% 3.08777e-02 30%

WENO-Z1(181) MOP-GMWENO-Z# (181)

Time, t Ly error X1 Lo error Xoo Lq error X1 Lo, error Xoo
300 5.57811e-03 3% 9.60994e-03 9% 9.38301e-03 74% 1.47213e-02 67%
600 1.04455e-02 7% 1.50933e-02 4% 1.70600e-02 74% 2.32755e-02 60%
900 1.47709e-02 7% 2.00720e-02 3% 2.09101e-02 52% 3.42640e-02 76%
1200 1.83129e-02 5% 2.40373e-02 1% 2.66533e-02 54% 3.22354e-02 36%

WENO-Z+ MOP-GMWENO-Z+

Time, t Ly error X1 Lo error Xoo L error X1 Lo error Xoo
300 5.09235e-02 843% 1.59585e-01  1710%  9.45604e-03 75% 2.50726e-02 184%
600 8.20317e-02 737% 1.84579e-01  1171%  1.50895e-02 54% 3.40525e-02 135%
900 1.03748e-01 653% 1.76101e-01 804%  2.18063e-02 58% 6.96188e-02  258%
1200 1.15534e-01 565%  2.22997e-01 838%  3.00894e-02 73% 5.66315e-02 138%

WENO-ZA MOP-GMWENO-ZA

Time, ¢ Ly error X1 Lo error Xoo Ly error X1 Lo error Xoo
300 5.10578e-03 -5% 8.86265e-03 1% 8.87687e-03 64% 1.54090e-02 75%
600 9.05646e-03 -8% 1.48176e-02 2% 1.82371e-02 86% 2.52104e-02 74%
900 1.41249e-02 3% 2.36763e-02 22% 1.99799e-02 45% 3.82169e-02 96%
1200 2.32315e-02 34% 6.80578e-02 186%  2.81372e-02 62% 3.76059e-02 58%

WENO-D MOP-GMWENO-D

Time, t L, error X1 Lo error Xoo L, error X1 Lo error Xoo
300 3.56420e-02  560% 1.23424e-01  1300%  1.18556e-02 120%  2.21312e-02 151%
600 8.58998e-02 777% 2.36754e-01  1530%  1.56335e-02 60% 2.43793e-02 68%
900 1.13762e-01 726%  2.77206e-01  1324%  2.57924e-02 87% 3.33097e-02 71%
1200 1.27002e-01 631%  2.78133e-01  1070%  2.51627e-02 45% 4.06869e-02 71%

WENO-A MOP-GMWENO-A

Time, t L, error X1 Lo error Xeo L1 error X1 Lo error Xoo
300 1.18154e-01  2088%  2.14177e-01  2330%  9.18713e-03 70% 1.47167e-02 67%
600 1.33707e-01  1265%  2.38106e-01  1540%  1.68488e-02 72% 2.48995e-02 71%
900 1.50686e-01 993%  2.33834e-01  1101%  2.07575e-02 51% 3.50088e-02 80%
1200 1.56130e-01 799% 2.35669e-01 891%  2.41207e-02 39% 3.23873e-02 36%

WENO-NIP MOP-GMWENO-NIP

Time, t Ly error X1 Lo error Xoo Ly error X1 Lo error Xoo
300 5.06954e-03 -6% 8.83927e-03 0% 9.18661e-03 70% 1.14320e-02 30%
600 8.65059e-03 -12% 1.48766e-02 2% 1.51265e-02 54% 2.28329e-02 57%
900 1.13469e-02 -18% 1.91798e-02 -2% 1.72611e-02 25% 2.19778e-02 13%
1200 1.36442e-02 -21% 2.29721e-02 -3% 2.13328e-02 23% 2.68344e-02 13%

221
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Figure 3: The solutions on solving Example 4.1.

Example 4.3 (Case 2). The SLP defined by Eq. (3.2).

In order to test the convergence properties, we compute both Case 1 and Case 2 to the
final time ¢ =2000 with the CFL=0.1. For the purpose of comparison, we also solve Case
1 and Case 2 by WENO-JS and WENO5-ILW.

In Tables 5, 6, the L1, Lo errors and the convergence orders are presented. It can
be observed that: (1) because of its highest dissipation, the WENO-JS scheme generates
significantly larger numerical errors than all other schemes, leading to the smallest L;
convergence orders; (2) the L; convergence orders of the MOP-GMWENO-X schemes
are distinctly higher than the WENO-X schemes, and the L; errors produced by the
MOP-GMWENO-Z, MOP-GMWENO-Z#(15), MOP-GMWENO-Z+, MOP-GMWENO-
ZA, MOP-GMWENO-D and MOP-GMWENO-A schemes are slightly smaller than the
WENO-X schemes in general; (3) the L; errors produced by the MOP-GMWENO-NIP
scheme on solving Case 1 are also slightly smaller than the WENO-NIP scheme, while
this holds true only for the computing case of N =800 on solving Case 2 as the MOP-
GMWENO-NIP scheme generates slightly and evidently larger L; errors for the com-
puting cases of N =400 and N = 200 respectively; (4) the L; errors produced by the
MOP-GMWENO-Z# (151) scheme are slightly larger on solving both Case 1 and Case
2; (5) the L, errors of the MOP-GMWENO-X schemes on solving Case 1 are smaller than
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Figure 4: Results of different schemes on solving Example 4.2 (Case 1) with t=200, N =1600.

the WENO-X schemes; (6) for Case 2, the Ly errors of the MOP-GMWENO-X schemes
are very close to, or even smaller for many cases than, the WENO-X schemes. In addi-
tion, by taking a view of the x —u profiles, we find that the resolutions of the WENO-
Z, WENO-Z#(15), WENO-Z+, WENO-ZA, WENO-D and WENO-A schemes are signif-
icantly lower than the MOP-GMWENO-Z, MOP-GMWENO-Z# (15), MOP-GMWENO-
Z+, MOP-GMWENO-ZA, MOP-GMWENO-D and MOP-GMWENO-A schemes, and
the WENO-Z7(131) and WENO-NIP schemes produce spurious oscillations but the
MOP-GMWENO-Z# (131) and MOP-GMWENO-NIP schemes, as well as all other MOP-
GMWENO-X schemes, can remove these oscillations properly. To demonstrate this, we
next perform detailed tests and show the solutions carefully.

We re-run both Case 1 and Case 2 by considered WENO schemes. Just for the purpose
of providing better illustrations but without loss of generality, we set the output time to
be t =200 and use the uniform meshes of N =1600 and N =3200 this time.

Figs. 4 and 6 give the solutions of different schemes with t =200, N = 1600 for
Case 1 and Case 2, respectively. It can be observed that: (1) the MOP-GMWENO-Z,
MOP-GMWENO-Z7(15), MOP-GMWENO-Z+, MOP-GMWENO-ZA, MOP-GMWENO-
D and MOP-GMWENO-A schemes generate no any spurious oscillations and obtain nu-
merical results with significantly better resolutions than the WENO-Z, WENO-Z(15),
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Table 5: Numerical errors and convergence orders of accuracy on Example 4.2 at t=2000.
WENOS5-ILW WENO-JS

N L, error L1 order Leo error Lo order L1 error L1 order Leo error Lo order
200 | 1.03240E-01 - 4.67252E-01 - 4.48148E-01 - 5.55748E-01 -
400 | 5.79848E-02 0.8323 4.70837E-01 -0.0110 3.37220E-01 0.4103 5.77105E-01 -0.0544
800 | 3.25843E-02 0.8315 4.74042E-01 -0.0098 2.93752E-01 0.1991 5.17829E-01 0.1564

WENO-Z MOP-GMWENO-Z

N L, error L, order Loo error Lo order L1 error L1 order Loo error Lo order
200 | 2.08722e-01 - 4.98364e-01 - 1.18245e-01 - 4.88876e-01 -
400 | 1.25878e-01 0.7296 5.94047e-01 -0.2534 6.67048e-02 0.8259 5.32787e-01 -0.1241
800 | 8.56252e-02 0.5559 6.02088e-01 -0.0194 3.79314e-02 0.8144 5.30365e-01 0.0066

WENO-Z#(75) MOP-GMWENO-Z#(15)

N L, error L, order Loo error Lo order L error L, order Leo error Lo order
200 | 2.35848e-01 - 5.46963e-01 - 1.18115e-01 - 4.82687e-01 -
400 | 1.34410e-01 0.8112 5.77563e-01 -0.0785 6.57450e-02 0.8452 4.99738e-01 -0.0501
800 | 8.88830e-02 0.5967 6.1096%¢e-01 -0.0811 3.74280e-02 0.8128 5.14095e-01 -0.0409

WENO-Z1(7s1) MOP-GMWENO-Z# (s1)

N L, error L, order Lo error Lo order L, error Ly order Lo error Lo order
200 | 1.06673e-01 - 5.57758e-01 - 1.16619¢-01 - 4.77852e-01 -
400 | 6.02857e-02 0.8233 5.67245e-01 -0.0243 6.51575e-02 0.8398 4.95518e-01 -0.0524
800 | 3.50816e-02 0.7811 5.87196e-01 -0.0499 3.70925e-02 0.8128 5.15105e-01 -0.0559

WENO-Z+ MOP-GMWENO-Z+

N L, error L, order Lo error Lo order L1 error L, order Lo error Lo order
200 | 2.35835e-01 - 5.53876e-01 - 9.90921e-02 - 4.99725e-01 -
400 | 1.46265e-01 0.6892 6.02883e-01 -0.1223 5.76023e-02 0.7826 4.90011e-01 0.0283
800 | 6.51259e-02 1.1673 5.83954e-01 0.0460 3.24177e-02 0.8293 4.81302e-01 0.0259

WENO-ZA MOP-GMWENO-ZA

N L1 error L, order Lo error Lo order L1 error L, order Lo error Lo order
200 | 1.31936e-01 - 5.50979e-01 - 1.17961e-01 - 5.1018%e-01 -
400 | 1.13400e-01 0.2184 6.01658e-01 -0.1269 6.61903e-02 0.8336 5.02192e-01 0.0228
800 | 6.70946e-02 0.7572 5.18541e-01 0.2145 3.65564e-02 0.8565 4.80328e-01 0.0642

WENO-D MOP-GMWENO-D

N Lq error L1 order Lo error Lo order Lq error L, order Lo error Lo order
200 | 2.08722e-01 - 4.98364e-01 - 1.18950e-01 - 4.90750e-01 -
400 | 1.25884e-01 0.7295 5.94701e-01 -0.2550 6.56664e-02 0.8571 4.81270e-01 0.0281
800 | 8.52679e-02 0.5620 5.98136e-01 -0.0083 3.80765e-02 0.7863 4.84771e-01 -0.0105

WENO-A MOP-GMWENO-A

N L, error L, order Loo error Lo order L1 error L1 order Leo error Lo order
200 | 3.29771e-01 - 5.51867e-01 - 1.16473e-01 - 4.80577e-01 -
400 | 2.02749e-01 0.7018 5.35326e-01 0.0439 6.65634e-02 0.8072 4.97352e-01 -0.0495
800 | 1.05379e-01 0.9441 5.54605e-01 -0.0510 3.62328e-02 0.8774 4.87916e-01 0.0276

WENO-NIP MOP-GMWENO-NIP

N L, error L, order Loo error Lo order L1 error L1 order Leo error Lo order
200 | 1.19293e-01 - 5.83513e-01 - 1.14420e-01 - 4.85124e-01 -
400 | 7.46960e-02 0.6754 5.61235e-01 0.0562 6.10704e-02 0.9058 4.82764e-01 0.0070
800 | 4.56612e-02 0.7101 5.18618e-01 0.1139 3.35626e-02 0.8636 4.75671e-01 0.0214

WENO-Z+, WENO-ZA, WENO-D, WENO-A schemes, and the WENO-JS and WENO-
M schemes; (2) the WENO-Z#(1g1) and WENO-NIP schemes inevitably generate se-
vere spurious oscillations while the MOP-GMWENO-Z# (131) and MOP-GMWENO-NIP
schemes can avoid these spurious oscillations successfully and at the same time they
can achieve considerably high resolutions, as accurate as the other MOP-GMWENO-X
schemes.

In Figs. 5 and 7, we give the solutions of different schemes respectively for the case
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Table 6: Numerical errors and convergence orders of accuracy on Example 4.3 at t=2000.
WENOS5-ILW WENO-JS
N L, error L, order Lo error Lo order L, error L1 order Lo error Lo order
200 | 2.27171E-01 - 5.14236E-01 - 6.12899E-01 - 7.99265E-01 -
400 | 1.15918E-01 0.9707 4.77803E-01 0.1060 5.99215E-01 0.0326 8.20493E-01 -0.0378
800 | 5.35871E-02 1.1131 4.74317E-01 0.0106 5.50158E-01 0.1232 8.14650E-01 0.0103
WENO-Z MOP-GMWENO-Z
N L, error L, order Lo error Lo order L1 error L1 order Loo error Lo order
200 | 3.86995e-01 - 6.85835e-01 - 4.51514e-01 - 7.68680e-01 -
400 | 2.02287e-01 0.9359 5.18993e-01 0.4021 1.76765e-01 1.3529 5.01169e-01 0.6171
800 | 1.66703e-01 0.2791 5.04564e-01 0.0407 6.44772e-02 1.4550 5.04415e-01 -0.0093
WENO-Z#(75) [ [ MOP-GMWENO-Z#(15)
N L, error L, order Lo error Lo order L, error L, order Loo error Lo order
200 | 3.24546e-01 - 6.51925e-01 - 4.48811e-01 - 7.65748e-01 -
400 | 2.31374e-01 0.4882 5.42432e-01 0.2653 1.82206e-01 1.3005 5.47587e-01 0.4838
800 | 1.55489e-01 0.5734 5.12270e-01 0.0825 6.41444e-02 1.5062 4.98985e-01 0.1341
WENO-Z1(7s1) MOP-GMWENO-Z#(ts1)
N L, error L, order Lo error Lo order L, error Ly order Lo error Lo order
200 | 2.42963e-01 - 6.39818e-01 - 3.77388e-01 - 7.39311e-01 -
400 | 1.33752e-01 0.8612 6.01344e-01 0.0895 1.61629¢-01 1.2234 4.91776e-01 0.5882
800 | 5.89144e-02 1.1829 5.73819e-01 0.0676 6.41956e-02 1.3321 4.95672e-01 -0.0114
WENO-Z+ MOP-GMWENO-Z+
N L, error L, order Lo error Lo order L, error Ly order Lo error Lo order
200 | 2.99492e-01 - 5.45598e-01 - 2.66825e-01 - 7.08732e-01 -
400 | 2.42059e-01 0.3072 4.96267e-01 0.1367 1.57975e-01 0.7562 5.38619e-01 0.3960
800 | 1.48193e-01 0.7079 5.49331e-01 -0.1466 5.99206e-02 1.3986 4.94470e-01 0.1234
WENO-ZA MOP-GMWENO-ZA
N L, error Ly order Lo error Lo order L1 error L, order Lo error Lo order
200 | 2.27174e-01 - 6.35754e-01 - 3.82186e-01 - 7.40853e-01 -
400 | 2.03221e-01 0.1607 5.99664e-01 0.0843 1.81782e-01 1.0721 4.90704e-01 0.5943
800 | 1.63892e-01 0.3103 5.32228e-01 0.1721 6.35776e-02 1.5156 4.94734e-01 -0.0118
WENO-D MOP-GMWENO-D
N L, error Ly order Lo error Lo order L1 error L, order Lo error Lo order
200 | 3.86995e-01 - 6.85835e-01 - 4.52027e-01 - 7.69911e-01 -
400 | 2.02287e-01 0.9359 5.18995e-01 0.4021 1.79447e-01 1.3329 5.13353e-01 0.5947
800 | 1.66552e-01 0.2804 5.04564e-01 0.0407 6.28595e-02 1.5134 4.94367e-01 0.0544
WENO-A MOP-GMWENO-A
N L, error L, order Lo error Lo order L, error L1 order Loo error Lo order
200 | 5.31200e-01 - 7.70910e-01 - 4.53035e-01 - 7.77065e-01 -
400 | 4.08352e-01 0.3794 6.93282e-01 0.1531 1.73916e-01 1.3812 5.29427e-01 0.5536
800 | 2.95123e-01 0.4685 5.90637e-01 0.2312 6.35906e-02 1.4515 4.87979%e-01 0.1176
WENO-NIP MOP-GMWENO-NIP
N L, error L, order Lo error Lo order L, error L, order Loo error Lo order
200 | 2.40800e-01 - 5.64249e-01 - 4.37570e-01 - 7.64352e-01 -
400 | 1.34966e-01 0.8352 5.68093e-01 -0.0098 1.58619¢-01 1.4639 5.19438e-01 0.5573
800 | 6.62377e-02 1.0269 5.18541e-01 0.1317 5.80606e-02 1.4499 4.84905e-01 0.0992

of t =200, N =3200. We can see that: (1) with the increase of grid number, the spuri-
ous oscillations produced by WENO-Z# (151) and WENO-NIP appear to be closer to the
discontinuities, and the amplitudes of these spurious oscillations seem to become larger,
however, MOP-GMWENO-Z7 (15 ) and MOP-GMWENO-NIP are still able to prevent the
spurious oscillations while provide greatly improved resolutions; (2) all the other MOP-
GMWENO-X schemes still generate no spurious oscillations and evidently provide much
better resolutions than the WENO-X schemes and the WENO-JS and WENO-M schemes.
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Figure 5: Results of different schemes on solving Example 4.2 (Case 1) with £=200, N =3200.

To summarize, we may conclude that the order-preserving property introduced in the
present study, can help the WENO-Z-type schemes to get high resolutions and remove
spurious oscillations at the same time for long-run simulations. Although we have only
shown the results of 1D linear advection equations so far, it is trivial to get the following
conclusions.

Remark 4.1. The technique and algorithm of introducing the order-preserving property
proposed previously in this paper can be directly extended to higher dimensions using
dimension by dimension approach and to system of equations using the characteristics-
wise approach [22].

Remark 4.2. In the same way that many previously published articles did [30-32,34-37,
42,43], the long-output-time simulations are only considered for the 1D linear advection
equation while not for the nonlinear hyperbolic conservation laws in the present work.
As mentioned in [31], the reason is that, for most of the nonlinear hyperbolic conser-
vation laws, only solutions under short output time are available and with output time
getting larger the waves will move out of the boundary. However, even if under short
output time, introducing the order-preserving property for WENO-Z-type schemes also
brings great improvement on simulating the nonlinear hyperbolic conservation laws. In
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Figure 6: Results of different schemes on solving Example 4.2 (Case 2) with t=200, N =1600.

Subsection 5.2, we will demonstrate this numerically in detail.

5 Numerical results

5.1 Accuracy test

To test the accuracy of different WENO schemes, we consider the smooth density pertur-
bation advection problem [12]. It is governed by the one-dimensional Euler equation

oU JF(U)
54_ ox =0,

0 pul (5.1)
U=| ou |, FU)=| pui®+p |,

E u(E+p)

where p is the density, u the velocity in the x direction, p the pressure, E the total energy,
and p=(y—1)(E—pu?/2), y=1.4. In all calculations of this subsection, the CFL number
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Figure 7: Results of different schemes on solving Example 4.2 (Case 2) with +=200, N =3200.

is set to be Ax?/3 to rule out the effect of the time advancement on the convergence order
of accuracy. The L1, L error of the density are computed by

L :h.Z‘p]{exact_(ph)j
)

4

, L =max |p]¢xact _ (Ph)j
]

where / is the mesh size and 1= Ax. (py,); is the computing results and p;?xad is the exact
solution.

The initial conditions of this problem in our tests are given in Example 5.1 and Exam-
ple 5.2 below.

Example 5.1. The first accuracy test is defined by
p(x,0)=1+0.2sin(7tx), u(x,0)=1, p(x,0)=1. (5.2)
The exact solution is computed by
p(x,t)=1402sin(mw(x—ut)), wu(xt)=1, p(xt)=1.

The computational domain is [0,2] and the output time is taken to be t =2.0.
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The numerical errors of the density and the convergence orders of different WENO
schemes are presented in Table 7. For comparison purpose, we also present the results
computed by the WENOS-ILW scheme. As expected, all the considered WENO schemes
can achieve the designed convergence orders. In addition, the L; and L, errors of all con-
sidered schemes are very close to those of the WENO-ILW scheme for this smooth prob-
lem. Here, we point out that the MOP-GMWENO-X scheme and the WENO-X scheme
are essentially the same method for smooth solution in the cases whose grid numbers
are not too small (e.g., N > 20 here). Actually, the minor accuracy loss of the MOP-
GMWENO-X schemes that only occurs with very small grid numbers and will disappear
immediately when the grid number increases very slightly is negligible and this has been
discussed carefully and detailedly in [34]. Furthermore, the MOP-GMWENO-X schemes
have solutions with better accuracy than WENO-JS in general.

Example 5.2. The second accuracy test is defined by

p(x,O):1+0.ZSin<7rx—Sing_[nx)>, u(x,0)=1, p(x,0)=1. (5.3)

The exact solution is computed by

sin (7w (x—ut))

p(x,t)=140.2sin <7T(x—ut)— p-

), u(x,t)=1, p(xt)=1.

Also, the computational domain is [0,2] and the output time is taken to be t=2.0.

Table 8 shows the numerical errors of the density and the convergence orders of differ-
ent WENO schemes. Again, we give the results computed by the WENOS5-ILW scheme.
Firstly, it can be observed that WENO-JS provides the lowest accurate results among all
considered schemes. Its L., convergence rate of accuracy drops by nearly 2 orders that
leads to the noticeable accuracy loss shown with the L; convergence orders. However, it
can be seen that the MOP-GMWENO-X and WENO-X schemes can recover the designed
convergence orders even in the presence of critical points.

5.2 Two-dimensional Euler equations

To examine the enhancement of the MOP-GMWENO-X schemes, we solve the two-
dimensional Euler equations in this subsection. Its strong conservative form is given
as

oU 0JF(U) aG( )
§+ ox * =0,
Y + pu (5.4)
_| pu pu p | pou
U= oV oUv  GU)= po*+p |’
E u(E+p) v(E+p)




230

Table 7: The L1, L errors of the density and the convergence rates of accuracy of different WENO schemes

for Example 5.1.
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WENOS5-ILW WENO-JS
N L1 error L1 order Lo error Lo order L, error L, order L error Lo order
10 | 5.57925e-03 - 4.31021e-03 - 2.46709e-02 - 1.76565e-02 -
20 | 1.87285e-04  4.8968 1.46004e-04  4.8837  1.30211e-03  4.2439  1.00423e-03  4.1360
40 | 5.94483e-06 49775 4.6603%-06 4.9694  4.15463e-05 4.9700 3.74857e-05  4.7436
80 | 1.8648%e-07 4.9945 1.46400e-07 49925 1.2986le-06 4.9997 1.20927e-06  4.9541
160 | 5.83322e-09 4.9987  4.58129e-09 49980  4.05543e-08 5.0010 3.81502e-08  4.9863
320 | 1.81943e-10  5.0027  1.44265e-10 49890  1.26670e-09  5.0007 1.17287e-09  5.0236
WENO-Z MOP-GMWENO-Z
N L1 error L1 order Lo error L order L1 error L1 order L error Lo order
10 | 6.08762e-03 - 4.50504e-03 - 1.35332e-02 - 1.00260e-02 -
20 | 1.88487e-04 5.0133  1.47175e-04 49359  1.88487e-04 6.1659 1.47175e-04  6.0901
40 | 5.94480e-06 49867 4.66387e-06  4.9799  5.94480e-06 4.9867 4.66387e¢-06  4.9799
80 | 1.8648%e-07 4.9945 1.46410e-07 49934  1.86489%¢-07 4.9945 1.46410e-07  4.9934
160 | 5.83323e-09 4.9987  4.58132e-09  4.9981 5.83323e-09  4.9987 4.58133e-09  4.9981
320 | 1.81941e-10  5.0028  1.44251e-10  4.9891 1.81941e-10  5.0028  1.44251e-10  4.9891
WENO-Z5(15) MOP-GMWENO-Z# (15)
N L1 error L1 order Lo error L order L1 error L1 order Lo error Lo order
10 | 6.02580e-03 - 4.51422¢-03 - 1.34684e-02 - 9.98726e-03 -
20 | 1.88232¢-04 5.0006 1.47368e-04  4.9370  1.88232¢-04 6.1609 1.47368e-04  6.0826
40 | 5.94481e-06  4.9847 4.66425e-06 49816  5.94481e-06 4.9847  4.66425e¢-06  4.9816
80 | 1.8648%e-07 4.9945 1.46410e-07 4.9936  1.86489%¢-07 4.9945 1.46410e-07  4.9936
160 | 5.83323e-09 4.9987 4.58133e-09  4.9981 5.83323e-09 49987 4.58133e-09  4.9981
320 | 1.81938e-10  5.0028  1.44269e-10  4.9889  1.81946e-10  5.0027  1.44260e-10  4.9890
WENO-ZT] (T31 ) MOP-GMWENO-ZI’] (Tgl )
N L1 error L1 order Lo error Lo order L1 error L, order Lo error Lo order
10 | 5.57331e-03 - 4.29858e-03 - 1.23782e-02 - 9.20236e-03 -
20 | 1.87285e-04 4.8952  1.46003e-04  4.8798  1.87285e-04 6.0464 1.46003e-04 5.9779
40 | 5.94483e-06 49775 4.66039¢-06  4.9694  5.94483e-06 4.9775 4.66039%e¢-06  4.9694
80 | 1.86489e-07  4.9945 1.46400e-07  4.9925  1.86489%e-07 49945 1.46400e-07  4.9925
160 | 5.83323e-09 4.9987 4.58130e-09 49980  5.83323e-09 49987 4.58130e-09  4.9980
320 | 1.81942e-10  5.0027  1.44275e-10  4.9889  1.81944e-10 5.0027 1.44261e-10  4.9890
WENO-Z+ MOP-GMWENO-Z+
N L1 error L1 order Lo error Lo order L, error L1 order Lo error Lo order
10 | 5.91748e-03 - 3.89100e-03 - 4.61518e-03 - 3.04605e-03 -
20 | 4.31540e-04 3.7774 3.83185e-04  3.3440 4.31540e-04 3.4188 3.83185e-04  2.9908
40 | 1.28245e-05  5.0725 1.21272e-05 49817 1.28245e-05  5.0725 1.21272e-05 49817
80 | 3.78662e-07 5.0818 3.90521e-07  4.9567  3.78662e-07 5.0818  3.90521e-07  4.9567
160 | 1.15394e-08 5.0363  1.21818e-08  5.0026  1.15394e-08 5.0363 1.21818e-08  5.0026
320 | 3.60494e-10  5.0004 3.72739e-10  5.0304  3.60491e-10  5.0005 3.72757e-10  5.0303
WENO-ZA MOP-GMWENO-ZA
N L1 error L1 order Lo error Lo order L, error L1 order Lo error Lo order
10 | 5.78359¢-03 - 4.46507e-03 - 1.26046e-02 - 9.33088e-03 -
20 | 1.87474e-04  4.9472 1.46141e-04 49332 1.87474e-04  6.0711 1.46141e-04 5.9966
40 | 5.94486e-06 4.9789  4.66039e-06 49708  5.94486e-06 49789  4.66039%e-06  4.9708
80 | 1.86489e-07 4.9945 1.46400e-07  4.9925  1.8648%e-07 4.9945 1.46400e-07  4.9925
160 | 5.83323e-09  4.9987  4.58130e-09  4.9980  5.83322e-09 4.9987 4.58128e-09  4.9980
320 | 1.81941e-10  5.0028  1.44262e-10  4.9890  1.81942e-10  5.0027  1.44257e¢-10  4.9890
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WENO-D MOP-GMWENO-D
N L1 error L, order Lo error Lo order L1 error L, order Lo error Lo order
10 | 6.08762e-03 4.50504e-03 1.35332e-02 1.00260e-02

20 | 1.88487e-04 5.0133 1.47175e-04 4.9359 1.88487e-04 6.1659 1.47175e-04 6.0901
40 | 5.94480e-06 4.9867 4.66387e-06 4.9799 5.94480e-06 4.9867 4.66387e-06 4.9799
80 | 1.8648%-07 4.9945 1.46410e-07 4.9934 1.8648%-07 4.9945 1.46410e-07 4.9934
160 | 5.83323e-09 4.9987 4.58132e-09 4.9981 5.83323e-09 4.9987 4.58133e-09 4.9981
320 | 1.81941e-10 5.0028 1.44251e-10 4.9891 1.81941e-10 5.0028 1.44251e-10 4.9891

WENO-A MOP-GMWENO-A
N L1 error Ly order Lo error Lo order L1 error L, order Lo error Lo order
10 | 5.57925e-03 4.31021e-03 1.23660e-02 9.21706e-03

20 | 1.87285e-04 4.8968 1.46004e-04 4.8837 1.87285e-04 6.0450 1.46004e-04 5.9802
40 | 5.94483e-06 4.9775 4.66039e-06 4.9694 5.94483e-06 4.9775 4.66039e-06 4.9694
80 | 1.86489%e-07 4.9945 1.46400e-07 4.9925 1.86489e-07 4.9945 1.46400e-07 4.9925
160 | 5.83323e-09 4.9987 4.58129e-09 4.9980 5.83323e-09 4.9987 4.58130e-09 4.9980
320 | 1.81943e-10 5.0027 1.44279e-10 4.9888 1.81941e-10 5.0028 1.44249e-10 4.9891

WENO-NIP MOP-GMWENO-NIP
N L1 error Ly order Lo error Lo order L1 error L, order Lo error Lo order
10 | 1.59200e-03 1.88378e-03 1.04077e-02 7.92518e-03

20 | 1.81848e-04 3.1300 1.34479e-04 3.8082 1.81848e-04 5.8388 1.34479e-04 5.8810
40 | 5.94395e-06 4.9352 4.64675e-06 4.8550 5.94395e-06 4.9352 4.64675e-06 4.8550
80 | 1.8648%-07 4.9943 1.46376e-07 4.9885 1.8648%¢-07 4.9943 1.46376e-07 4.9885
160 | 5.83322e-09 4.9987 4.58125e-09 4.9978 5.83323e-09 4.9987 4.58125e-09 4.9978
320 | 1.81943e-10 5.0027 1.44258e-10 4.9890 1.81943e-10 5.0027 1.44241e-10 4.9892

where p, u, p and E are the same as in Eq. (5.1) and v is velocity in the y direction. Simi-
larly, we use the following equations of state for ideal gases to close Eq. (5.4)

p=(v—1) <E—%p(u2+vz)), y=14.

For brevity in the discussion, we only focus on two standard examples. The first one
is the 2D Riemann problem [15-17], and the second one is the shock-vortex interaction
problem [47-49]. We choose the CFL number to be 0.5 in all calculations of this subsec-
tion.

5.2.1 2D Riemann problem

Example 5.3. We consider the 2D Riemann problem. Since the first test 2D Riemann prob-
lem was introduced by [15], it has become a widely-used two-dimensional test case for
the high-resolution numerical methods [17,18,38]. In our present example, the Configu-
ration 9 of [17] is taken. It is defined on the rectangular computational domain [0,1] x [0,1]
that is divided into four quadrants by lines x =0.5 and y = 0.5, and the following initial
constant states in each quadrant are specified

(1.0,0.0,0.3,1.0)T, 05<x<10, 05<y<1.0,
(2.0,0.0,—0.3,1.0)T, 0.0<x<05, 05<y<1.,
UGey0)=90 (1.039,00,0.8133,04)T, 0.0<x<05, 0.0<y<0.5,
(

0.5197,0.0,—0.4259,0.4)T, 05<x<1.0, 0.0<y<O0.5.
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Table 8: The L1, L errors of the density and the convergence rates of accuracy of different WENO schemes

for Example 5.2.
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WENOS5-ILW WENO-JS

N L1 error L1 order Lo error Lo order L, error L, order L error Lo order
10 | 2.65885e-02 - 2.42757e-02 - 3.96420e-02 - 4.33175e-02 -

20 | 1.85214e-03  3.8435 2.25478e-03  3.4285  4.12024e-03  3.2662  4.83249e-03  3.1641
40 | 6.72815e-05 3.7828  9.26702e-05  4.6047  2.73458e-04 3.9133 3.72118e-04  3.6989
80 | 2.15464e-06 4.9647 3.01580e-06  4.9415  1.42262e-05 4.2647 3.21426e-05  3.5332
160 | 6.77495e-08  4.9911 9.51825e-08  4.9857  6.77367e-07 4.3925 3.02134e-06  3.4112
320 | 2.12023e-09  4.9979  2.98236e-09  4.9962  3.38590e-08 4.3223  3.05139e-07  3.3077

WENO-Z MOP-GMWENO-Z

N L1 error L1 order Lo error L order L1 error L1 order L error Lo order
10 | 2.04632e-02 - 2.06144e-02 - 3.04124e-02 - 3.38563e-02 -

20 | 1.18306e-03  4.1124  1.13020e-03  4.1890  2.04082e-03  3.8974  3.07733e-03  3.4597
40 | 5.62173e-05 4.3954  9.47028e-05 3.5770  7.54893e-05 4.7567 1.06191e-04  4.8569
80 | 2.04617e-06 4.7800 3.01102e-06  4.9751 2.04617e-06 52053  3.01102e-06  5.1403
160 | 6.68022e-08 4.9369  9.51811e-08 49834  6.68022e-08 49369 9.51810e-08  4.9834
320 | 2.11297e-09  4.9826  2.98203e-09  4.9963  2.11297e-09 4.9826  2.98203e-09  4.9963

WENO-Z5(15) MOP-GMWENO-Z# (15)

N L1 error L1 order Lo error L order L1 error L1 order Lo error Lo order
10 | 2.09002e-02 - 2.09558e-02 - 3.04489¢-02 - 3.39484e-02 -

20 | 1.19359¢-03  4.1301 1.17806e-03  4.1529  2.01481e-03 3.9177  3.04597e-03  3.4784
40 | 5.64972e-05 44010 9.45530e-05  3.6391  7.53576e-05 4.7407 1.05810e-04  4.8474
80 | 2.04941e-06 4.7849  3.01125e-06  4.9727  2.04941e-06 5.2005 3.01125e-06  5.1350
160 | 6.68307e-08  4.9386  9.51809e-08 49835  6.68307e-08 49386 9.51809e-08  4.9835
320 | 2.11313e-09 49831 2.98254e-09 49961  2.11313e-09 4.9831 2.98253e-09  4.9961

WENO-ZT] (T31 ) MOP-GMWENO-ZI’] (Tgl )

N L1 error L1 order Lo error Lo order L1 error L, order Lo error Lo order
10 | 2.62185e-02 - 2.41549e-02 - 2.86051e-02 - 3.25261e-02 -

20 | 1.85177e-03  3.8236  2.25439e-03  3.4215 2.27118e-03  3.6548 3.22579¢-03  3.3339
40 | 6.72815e-05 4.7826  9.26702e-05  4.6045 7.70601e-05 4.8813  1.04861e-04  4.9431
80 | 2.15464e-06 49647  3.01580e-06  4.9415  2.15464e-06 5.1605 3.01580e-06  5.1198
160 | 6.77495e-08  4.9911 9.51825e-08  4.9857  6.77495e-08 4.9911 9.51825e-08  4.9857
320 | 2.12024e-09  4.9979  2.98237e-09  4.9962  2.12023e-09 4.9979  2.98236e-09  4.9962

WENO-Z+ MOP-GMWENO-Z+

N L1 error L1 order Lo error Lo order L, error L1 order Lo error Lo order
10 | 7.73904e-03 - 7.48121e-03 - 1.27380e-02 - 1.14846e-02 -

20 | 4.95302¢-04 3.9658 5.45534e-04  3.7775  1.92014e-03  2.7299  2.50856e-03  2.1948
40 | 5.00701e-05 3.3063  8.02140e-05 2.7657  5.50151e-05 5.1252  1.16909e¢-04  4.4234
80 | 3.04854e-06 4.0378 8.56431e-06  3.2274  3.04854e-06 4.1736  8.56431e-06  3.7709
160 | 1.77633e-07  4.1011  9.41566e-07  3.1852  1.77633e-07 4.1011  9.41566e-07  3.1852
320 | 1.10103e-08  4.0120 1.06615e-07  3.1427  1.10103e-08  4.0120 1.06615e-07  3.1427

WENO-ZA MOP-GMWENO-ZA

N L1 error L1 order Lo error Lo order L, error L1 order Lo error Lo order
10 | 2.62478e-02 - 2.43179e-02 - 2.89498e-02 - 3.24003e-02 -

20 | 1.84035e-03  3.8341 2.24260e-03  3.4388  2.10030e-03  3.7849  2.99185e-03  3.4369
40 | 6.72478e-05 4.7743  9.26639e-05  4.5970  7.70265e-05 4.7691  1.04867e-04  4.8344
80 | 2.15457e-06 49640 3.01580e-06  4.9414  2.15457e-06  5.1599  3.01580e-06  5.1199
160 | 6.77493e-08  4.9911 9.51825e-08  4.9857  6.77493e-08 4.9911 9.51825e-08  4.9857
320 | 2.12024e-09 49979  2.98237e-09  4.9962  2.12024e-09 49979  2.98237e-09  4.9962
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WENO-D MOP-GMWENO-D
N L1 error L, order Lo error Lo order L1 error L, order Lo error Lo order
10 | 2.04632e-02 2.06144e-02 3.04124e-02 3.38563e-02

20 | 1.18306e-03 41124 1.13020e-03 4.1890 2.04082e-03 3.8974 3.07733e-03 3.4597
40 | 5.62173e-05 4.3954 9.47028e-05 3.5770 7.54893e-05 4.7567 1.06191e-04 4.8567
80 | 2.04617e-06 4.7800 3.01102e-06 4.9751 2.04617e-06 5.2053 3.01102e-06 5.1403
160 | 6.68022e-08 4.9369 9.51811e-08 4.9834 6.68022e-08 4.9369 9.51810e-08 4.9834
320 | 2.11297e-09 4.9826 2.98203e-09 4.9963 2.11297e-09 4.9826 2.98203e-09 4.9963

WENO-A MOP-GMWENO-A
N L1 error Ly order Lo error Lo order L1 error L, order Lo error Lo order
10 | 1.83037e-02 1.90477e-02 2.99262e-02 3.35183e-02

20 | 1.25386e-03 3.8677 1.77100e-03 3.4270 1.92453e-03 3.9588 2.85230e-03 3.5548
40 | 6.72815e-05 4.2200 9.26702e-05 4.2563 7.70601e-05 4.6424 1.04861e-04 4.7656
80 | 2.15464e-06 4.9647 3.01580e-06 4.9415 2.15464e-06 5.1605 3.01580e-06 5.1198
160 | 6.77495e-08 49911 9.51825e-08 4.9857 6.77495e-08 49911 9.51825e-08 4.9857
320 | 2.12024e-09 4.9979 2.98238e-09 4.9962 2.12023e-09 4.9979 2.98237e-09 4.9962

WENO-NIP MOP-GMWENO-NIP
N L1 error Ly order Lo error Lo order L1 error L, order Lo error Lo order
10 | 2.33776e-02 2.39846e-02 - 2.01935e-02 2.86901e-02

20 | 1.64174e-03 3.8318 2.00222e-03 3.5824 2.19785e-03 3.1997 3.03570e-03 3.2405
40 | 6.70209e-05 4.6145 9.18945e-05 4.4455 7.68682e-05 4.8376 1.04304e-04 4.8632
80 | 2.15445e-06 4.9592 3.01546e-06 4.9295 2.15445e-06 5.1570 3.01546e-06 5.1123
160 | 6.77491e-08 4.9910 9.51826e-08 4.9855 6.77491e-08 4.9910 9.51826e-08 4.9855
320 | 2.12024e-09 4.9979 2.98236e-09 4.9962 2.12023e-09 4.9979 2.98236e-09 4.9962

The outflow condition is employed on all edges. We discretize the computational domain
into 800 x 800 cells and set t =0.3.

The solutions are shown in Fig. 8. In the first two columns, we give the density
profiles of the 2D Riemann problem simulated by the WENO-X schemes and MOP-
GMWENO-X schemes respectively. In the last two columns, we display the close-up
view of the zone where the post-shock oscillations are generated. We can observe that:
(1) the main structure of the 2D Riemann problem was captured properly by all the con-
sidered schemes; (2) in the solutions of the WENO-X schemes, evident post-shock os-
cillations can be observed, however, in almost all the solutions of the MOP-GMWENO-
X schemes except MOP-GMWENO-NIP, the post-shock oscillations are dramatically re-
duced; (3) moreover, from the close-up views in the last two columns, it is easy to see that
the amplitudes of the post-shock oscillations produced by the WENO-X schemes (except
WENO-NIP) are much larger than the MOP-GMWENO-X schemes; (4) although both
the WENO-NIP and MOP-GMWENO-NIP schemes produce evident post-shock oscilla-
tions, it appears that the MOP-GMWENO-NIP scheme performs slightly better than the
WENO-NIP scheme, and we will discuss this further in the next example. In summary,
we claim that this should be an additional benefit of the new proposed WENO schemes
that satisfy the OP property.

5.2.2 Shock-vortex interaction

Example 5.4. This is a very favorable two-dimensional test case for high-resolution meth-
ods [47-49]. The computational domain is [0,1] x [0,1], and the initial condition is given
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Figure 8: Density contours of Example 5.3.
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and € is 0.3, . is 0.05, « is 0.204, x. is 0.25, y. is 0.5. The outflow condition is used on all
edges. We discretize the computational domain into 800 x 800 cells and set ¢ =0.35.

We show the results computed by the MOP-GMWENO-X schemes and the WENO-
X schemes in Fig. 10. In the first two columns, the solutions in the density profile of
the WENO-X schemes and the MOP-GMWENO-X schemes are given, respectively. In
order to show the enhancement of the MOP-GMWENO-X schemes more clearly, in the
last column, we show the density cross-sectional slices at y =0.65. We can observe that:
(1) the main structure of this complicated flow are captured properly by all considered
schemes; (2) the WENO-X schemes generate evident numerical oscillations, however,
the MOP-GMWENO-X schemes, except MOP-GMWENO-NIP, can considerably decrease
these oscillations; (3) it is interesting that the oscillation produced by WENO-NIP is ex-
tremely violent, leading to the fact that the MOP-GMWENO-NIP scheme produces oscil-
lations with larger amplitudes than that of the other MOP-GMWENO-X schemes, even
larger than the other WENO-X schemes; (4) in spite of this, we can easily find that the
MOP-GMWENO-NIP scheme significantly reduces the oscillations comparing with the
WENO-NIP scheme; (5) also, from the last column, we can easily find that the amplitudes
of the oscillations produced by the WENO-X schemes are much greater than the MOP-
GMWENO-X schemes. As mentioned before, this should be a benefit of the WENO-Z-
type schemes with OP generalized mappings.

5.3 Computational cost comparison for 2D problems

In this subsection, we present the computational cost comparison for 2D problems.
In [33], the CPU time comparison of two-dimensional problems for the WENO-JS,
WENO-M and WENO-Z schemes were performed. It was indicated that WENO-Z
was the most efficient scheme among these three schemes and about 25% faster than
the WENO-M scheme. Thus, for illustrative purpose and to save space in the present
study, we take the MOP-GMWENO-Z scheme which was an improvement of the classi-
cal WENO-Z scheme as an example to examine the CPU time-consuming for 2D system
of Euler equations with test cases taken in the previous subsection. For comparison pur-
pose, we also present the results of the WENO-JS, WENO-M and WENO-Z schemes.

We test Example 5.3 and Example 5.4 by using the same computing conditions as
used in Subsection 5.2.1. Moreover, a different mesh size is considered for each test re-
spectively. An in-house code developed in C++ is employed, running in serial mode
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Figure 10: Density contours of Example 5.4 and the density cross-sectional slices at y=0.65.
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Figure 11: Continued.
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Table 9: CPU time-consuming (in seconds) and the extra cost compared to the WENO-JS scheme (in per-
centage) per Runge-Kutta step of Example 5.3 as computed by the WENO-JS, WENO-M, WENO-Z and
MOP-GMWENO-Z schemes with 400 x 400 meshes.

Scheme Test 1 Test 2 Tetst 3 Aver
WENO-JS 0.889(-) 0.858(-) 0.827(-) 0.858(-)
WENO-M 1.108(24.63%) 1.092(27.27%) 1.045(26.36%) 1.082(26.07%)
WENO-Z 0.874(-1.69%) 0.842(-1.86%) 0.811(-1.93%)  0.842(-1.83%)

MOP-GMWENO-Z | 0.967(8.77%) 0.951(10.84%) 0.889(7.50%)  0.936(9.05%)

Table 10: CPU time-consuming (in seconds) and the extra cost compared to the WENO-JS scheme (in per-
centage) per Runge-Kutta step of Example 5.3 as computed by the WENO-JS, WENO-M, WENO-Z and
MOP-GMWENO-Z schemes with 800 x 800 meshes.

Scheme Test 1 Test 2 Tetst 3 Aver
WENO-JS 3.401(-) 3.463(-) 3.416(-) 3.427(-)
WENO-M 4.290(26.14%) 4.415(27.49%) 4.368(27.87%) 4.358(27.17%)
WENO-Z 3.325(-2.23%)  3.416(-1.36%) 3.354(-1.81%) 3.365(-1.80%)

MOP-GMWENO-Z | 3.698(8.73%)  3.753(8.37%)  3.726(9.07%)  3.725(8.73%)

Table 11: CPU time-consuming (in seconds) and the extra cost compared to the WENO-JS scheme (in per-
centage) per Runge-Kutta step of Example 5.4 as computed by the WENO-JS, WENO-M, WENO-Z and
MOP-GMWENO-Z schemes with 400 x400 meshes.

Scheme Test 1 Test 2 Tetst 3 Aver
WENO-JS 0.936(-) 0.967(-) 0.952(-) 0.951(-)
WENO-M 1.217(30.02%) 1.279(32.26%) 1.232(29.41%) 1.243(30.58%)
WENO-Z 0.904(-3.42%)  0.951(-1.65%) 0.920(-3.36%)  0.925(-2.80%)

MOP-GMWENO-Z | 1.030(10.04%)  1.061(9.72%) 1.046(9.87%) 1.046(9.87%)

Table 12: CPU time-consuming (in seconds) and the extra cost compared to the WENO-JS scheme (in per-
centage) per Runge-Kutta step of Example 5.4 as computed by the WENO-JS, WENO-M, WENO-Z and
MOP-GMWENO-Z schemes with 800 x 800 meshes.

Scheme Test 1 Test 2 Tetst 3 Aver
WENO-JS 4.165() 4.118() 4.134() 4.139(9)
WENO-M 5.538(32.97%) 5.289(28.44%) 5.320(28.69%) 5.382(30.04%)
WENO-Z 4.132(-0.79%)  3.978(-3.40%) 4.056(-1.89%)  4.055(-2.02%)

MOP-GMWENO-Z | 4.524(8.62%)  4.493(9.11%)  4.509(9.07%)  4.508(8.93%)

under Windows system, and the CPU is Intel(R) Core(TM) i7-6700 3.40GHz. To eliminate
the influences of other operations such as the initialization, boundary treatment, etc., as
applied in reference [33], the CPU timing per Runge-Kutta step is considered here. And
to mitigate the influence of randomness, each test is repeated three times under the same
condition.

Let TX denote the CPU time-consuming (in seconds) of a Runge-Kutta step of the
WENO-X scheme and {X denote the extra cost (in percentage) of the WENO-X scheme
compared to the WENO-JS scheme, taking the form {X = (TX —T75) / TS x 100%.

In Tables 9-12, the CPU time-consuming of the WENO-JS, WENO-M, WENO-Z and
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MOP-GMWENO-Z schemes and the extra cost (in brackets) of the WENO-M, WENO-Z
and MOP-GMWENO-Z schemes are presented. From Tables 9-12, we can find that: (1)
for each example with different mesh sizes, the CPU time-consuming in the three tests
has a certain degree of fluctuation; (2) the most efficient scheme is WENO-Z and the
most inefficient one is WENO-M whose extra cost compared to WENO-JS is about 25%
to 30%, and these results are consistent with those obtained in [33,44]; (3) as expected, the
computational cost of MOP-GMWENO-Z has increased due to the additional operations
for the order-preserving implementation as shown in Algorithm 1; (4) however, the extra
costs of MOP-GMWENO-Z for all tests are no more than 10% on average, and they are
far less than those obtained by the WENO-M scheme.

6 Conclusions

In this paper we improved the family of the WENO-Z-type schemes. We have extended
the order-preserving (OP) criterion to the WENO-Z-type schemes. As reported in the
literature, the OP property plays an important role in preserving high resolutions and
meanwhile avoiding spurious oscillations for the traditional mapped WENO schemes on
long simulations.

As the fact that the real-time one-to-one relationships between the nonlinear weights
of the WENO-JS scheme and those of the WENO-Z-type schemes are very similar to the
designed mapping relationships of the traditional mapped WENO schemes, we gener-
ated the idea of establishing the concept of generalized mapped WENO scheme. Accord-
ingly, we devised a uniform formula for the Z-type weights. And then, we designed
a general algorithm to implement our idea. Therefore, the improved WENO-Z-type
schemes, dubbed MOP-GMWENO-X, have been proposed by naturally introducing the
OP criterion. Compared to the traditional WENO-Z-type schemes, the improved WENO-
Z-type schemes have the following enhancements: (1) they can amend the drawback of
the traditional WENO-Z-type schemes of suffering from either generating spurious os-
cillations or losing high resolutions in long simulations of hyperbolic problems; (2) they
can significantly decrease the post-shock oscillations in the simulations of the 2D Euler
problems with strong shock waves.
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