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Abstract. The so-called “small denominator problem” was a fundamental problem of
dynamics, as pointed out by Poincaré. Small denominators appear most commonly in
perturbative theory. The Duffing equation is the simplest example of a non-integrable
system exhibiting all problems due to small denominators. In this paper, using the
forced Duffing equation as an example, we illustrate that the famous “small denomi-
nator problems” never appear if a non-perturbative approach based on the homotopy
analysis method (HAM), namely “the method of directly defining inverse mapping”
(MDDiM), is used. The HAM-based MDDiM provides us great freedom to directly
define the inverse operator of an undetermined linear operator so that all small de-
nominators can be completely avoided and besides the convergent series of multiple
limit-cycles of the forced Duffing equation with high nonlinearity are successfully ob-
tained. So, from the viewpoint of the HAM, the famous “small denominator problems”
are only artifacts of perturbation methods. Therefore, completely abandoning pertur-
bation methods but using the HAM-based MDDiM, one would be never troubled by
“small denominators”. The HAM-based MDDiM has general meanings in mathemat-
ics and thus can be used to attack many open problems related to the so-called “small
denominators”.

AMS subject classifications: 41A58, 34C25
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1 Origin of “small denominator problem”

Poincaré [1] pointed out that the so-called “small denominator problem” was “the fun-
damental problem of dynamics”. The small denominator was first mentioned by De-
launay [2] in his 900 pages book about celestial motions using perturbation method.
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Poincaré [1] first recognized that, when small denominator appears, the coefficients of
perturbation series may grow too large too often, threatening the convergence of the se-
ries. As pointed out by Pérez [3], “small denominators are found most commonly in
the perturbative theory”. It often appears when perturbation methods are used to solve
problems in classical and celestial mechanics [4], fluid mechanics [5, 6], and so on [7, 8].

What is the origin of the so-called “small denominator problem”? As pointed out
by Giorgilli [9], the Duffing equation [10] “is perhaps the simplest example of a non-
integrable system exhibiting all problems due to the small denominators”. So, without
loss of generality, let us focus on the forced Duffing equation

N [u(t)]=u′′(t)+2ξu′(t)+u(t)+βu3(t)−αcos(Ωt)=0, (1.1)

where N is a nonlinear operator, the prime denotes the differentiation with respect to
the time t, α and Ω is the amplitude and frequency of the external force F = αcos(Ωt),
ξ>0 is the resistance coefficient, and β>0 is a physical parameter related to nonlinearity,
respectively.

As pointed out by Kartashova [11], “physical classification of PDEs is based not on the
form of equations, but on the form of solutions”. So, let us consider here the stationary
periodic limit-cycle of u(t) as t→+∞ of the forced Duffing equation (1.1), which can be
expressed in the form:

u(t)=
+∞

∑
n=1

{
an cos(ωnt)+bn sin(ωnt)

}
, (1.2)

where an, bn are constants and

ωn =(2n−1)Ω, n≥1. (1.3)

This is mainly because the common solution

Aexp(−ξt)cos(t)+Bexp(−ξt)sin(t)

of the linear equation
u′′(t)+2ξu′(t)+u(t)=0

tends to zero as t→+∞ for arbitrary constants A and B, and thus disappear in the so-
called “solution-expression” (1.2) of the limit-cycle.

Let us first show how perturbation technique [12, 13] can bring the so-called small
denominators into the above-mentioned problem. Let β be a small parameter and assume
that u(t) can be expanded in such a series

u(t)=u0(t)+
+∞

∑
n=1

un(t)βn. (1.4)
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Substituting it into (1.1) and equating the like power of β, we have the perturbation equa-
tions at different orders of β:

β0 : u′′0 (t)+2ξu′0(t)+u0(t)=αcos(Ωt), (1.5a)

β1 : u′′1 (t)+2ξu′1(t)+u1(t)=−u3
0(t), (1.5b)

β2 : u′′2 (t)+2ξu′2(t)+u2(t)=−3u2
0(t)u1(t), (1.5c)

β3 : u′′3 (t)+2ξu′3(t)+u3(t)=−3u2
0(t)u2(t)−3u0(t)u2

1(t),··· . (1.5d)

The above perturbation equations have the unique linear operator

L0[u(t)]=u′′(t)+2ξu′(t)+u(t), (1.6)

whose inverse operator L−1
0 reads

L−1
0 [cos(ωt)]=

(1−ω2)cos(ωt)+2ξωsin(ωt)
(1−ω2)2+4ξ2ω2 , (1.7a)

L−1
0 [sin(ωt)]=

(1−ω2)sin(ωt)−2ξωcos(ωt)
(1−ω2)2+4ξ2ω2 , (1.7b)

where ω is a frequency. Note that the denominator

(1−ω2)2+4ξ2ω2

becomes rather small when ω→1 and ξ→0 so that small denominators appear. This is
the origin of the so-called “small denominator problem”. Thus, for Eq. (1.1), the “small
denominator problem” occurs when ξ is small and Ω=1/(2n−1), i.e., ωn=(2n−1)Ω=1,
for any a positive integer n≥1. Without loss of generality, let us focus on here the fixed
values α=1 and Ω=1/3, say, ω2=3Ω=1, but investigate different values of ξ and β. In
this case, the so-called “resonance” occurs when ξ = 0 and the “near resonance” occurs
for a small ξ, corresponding to the “small denominator problem”.

In the frame of the perturbation approach, the unique initial guess is given according
to (1.5a) and (1.7a), say,

u0(t)=
(1−Ω2)cos(Ωt)+2ξΩsin(Ωt)

(1−Ω2)2+4ξ2Ω2 . (1.8)

Note that small denominator appears when Ω→1 and ξ→0 for this perturbation initial
approximation! This is the reason why we choose Ω=1/3=ω1 in this paper, otherwise
the perturbation method fails at the very beginning.

Let us first consider the perturbation method in case of Ω=1/3 and α=1. It is found
that, when ξ = 1/100, say, there exists the so-called “small denominator problem” for
the terms cos(ω2t) and sin(ω2t), where ω2 =3Ω=1, the perturbation series is divergent
even for a small value β = 0.012, corresponding to a rather weak nonlinearity. Thus,
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when the so-called “small denominator problem” appears, the perturbation method is
indeed invalid in practice. Besides, it is found that, when ξ = 1, the perturbation series
is also divergent for β≥0.55, indicating that the perturbation series is divergent for high
nonlinearity even if the “small denominator problem” does not occur! Therefore, the
perturbation approach indeed does not work for high nonlinearity and/or when the so-
called “small denominator problem” occurs. As mentioned by Arnol’d [4], there often
exist two difficulties with perturbation method in many classical and celestial problems:
(I) the appearance of small denominator, and (II) the divergence of solution series.

The above-mentioned perturbation approach has the following disadvantages:

(1). Small/large physical parameters should exist;

(2). There is no freedom to choose its linear operator;

(3). There is no freedom to choose its initial approximation;

(4). It is convergent only for weak nonlinearity.

These limitations of perturbation methods are well-known. They are the origin of the
so-called “small denominator problem” and the divergence of solution series.

Note that, due to some historic reasons, the so-called “small denominator problem”
has very close relationships with perturbation methods. Indeed, “small denominators are
found most commonly in the perturbative theory”, as pointed out by Pérez [3]. Is per-
turbation method the only way to solve these problems? What happens if we completely
abandon perturbation methods ?

In this paper, we use the forced Duffing equation (1.1) to illustrate that the so-called
“small denominator problem” can never appear if we completely abandon perturbation
techniques but use a non-perturbative technique, namely the homotopy analysis method
(HAM) [14–26], which is based on the basic concept “homotopy” in topology and can
overcome all restrictions of perturbation methods. A new HAM-based approach is pro-
posed, which provides us great freedom to directly define the inverse operator of an
auxiliary linear operator so that all small denominators can be completely avoided. Con-
vergent series of multiple limit-cycles of the Duffing equation are successfully obtained,
although the directly defined inverse operators might be beyond the traditional mathe-
matical theories. Thus, from the viewpoint of the HAM, the famous “small denominator
problems” are only artifacts of perturbation methods. Therefore, completely abandoning
perturbation methods, one would be never troubled by small denominators, as illus-
trated below in this paper.

2 Basic ideas of the HAM

Can we avoid the famous “small denominator problem” in a systematic way? The answer
is yes. Here, we give an approach based on the homotopy analysis method (HAM) [14–
16], which can completely avoid the “small denominator problem”.
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“Small denominators are found most commonly in the perturbative theory”, as
pointed out by Pérez [3]. So, in order to avoid “small denominator problem”, we must
abandon perturbation methods completely. The homotopy analysis method (HAM) was
proposed by Liao in 1992 in his dissertation [14]. Based on the basic concept homotopy
in topology [27], i.e., a continuous deformation, the HAM [15–26] has the following ad-
vantages:

(a). Unlike perturbation techniques, the HAM works even if there exist no small/large
physical parameters;

(b). The HAM provides great freedom to choose an auxiliary linear operator;

(c). The HAM provides great freedom to choose an initial guess;

(d). Different from other approximation methods, the HAM can guarantee the conver-
gence of solution series even for highly nonlinear problem.

The HAM has been broadly used and its above-mentioned advantages have been verified
and confirmed in thousands of articles by scientists and engineers all over the world [28–
42]. In this paper, we use the forced Duffing equation (1.1) as an example to illustrate
how to completely avoid the “small denominator problem” by means of a HAM-based
approach.

First, let us briefly describe the basic ideas of the HAM using (1.1) as an example. Let

S=
+∞

∑
n=1

[
An cos(ωnt)+Bn sin(ωnt)

]
(2.1)

denote a vector space, where ωn is defined by (1.3) and An,Bn are arbitrary constants. Let
u(t)∈S , L denote an auxiliary linear operator with the property L[0]=0, which we have
great freedom to choose, q∈ [0,1] be a homotopy parameter, u0(t)∈S be an initial guess
of u(t), c0 be a constant having no physical meanings, namely “the convergence-control
parameter”, whose value will be determined later, respectively. Then, we construct a
continuous deformation φ(t,q)∈S from the initial guess u0 ∈S to the solution u(t)∈S
of the forced Duffing equation (1.1), governed by the so-called zeroth-order deformation
equation

(1−q)L[φ(t,q)−u0(t)]= c0qN [φ(t,q)], q∈ [0,1], (2.2)

where the nonlinear operatorN [u] is defined by Eq. (1.1). When q=0, due to the property
L[0]=0 of the auxiliary linear operator, we have the solution

φ(t,0)=u0(t) (2.3)

of Eq. (2.2). When q= 1, Eq. (2.2) is exactly the same as the original equation (1.1), thus
we have the solution

φ(t,1)=u(t), (2.4)
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where u(t) is the solution (limiting cycle) of the original Duffing equation (1.1). So, as
q increases from 0 to 1, φ(t,q) deforms continuously from the initial guess u0(t) to the
solution u(t) of the original nonlinear equation (1.1), since both of u0(t)∈S and u(t)∈S
can be expressed by the so-called “solution expression” (1.2). Then, expanding φ(t,q) in
a power series of q, we have according to (2.3) the homotopy-series

φ(t,q)=u0(t)+
+∞

∑
k=1

uk(t)qk. (2.5)

Note that φ(t,q)∈S is dependent upon the so-called convergence-control parameter c0,
which has no physical meanings. Therefore, uk(t)∈S (k≥ 1) in (2.5) is also dependent
upon c0 so that the convergence radius of the series (2.5) is determined by c0. Here, it
should be emphasized that we have great freedom to choose the auxiliary linear operator
L, the initial guess u0 and the convergence-control parameter c0. This is the key point
of the HAM. Assuming that the auxiliary linear operator L, the initial guess u0 and the
convergence-control parameter c0 are so properly chosen that the Maclaurin series (2.5)
is convergent at q=1, we have due to (2.4) the homotopy-series solution

u(t)=u0(t)+
+∞

∑
k=1

uk(t). (2.6)

So, even for given auxiliary linear operator L and initial guess u0, the convergence-
control parameter c0 provides us an additional way to guarantee the convergence of
the solution series, which overcomes the limitations of perturbation methods mentioned
above, as illustrated below in this paper and other publications [28–42].

Substituting the power series (2.5) into the zeroth-order deformation equation (2.2)
and equating the like-power of q, we have the high-order deformation equation

L[um(t)−χmum−1(t)]= c0Rm−1(t), m≥1, (2.7)

where

Rk(t)=
1
k!

dkN [φ(t,q)]
dqk

∣∣∣∣∣
q=0

(2.8)

in general and

Rk(t)=


u′′0 +2ξu′0+u0+βu3

0−αcos(Ωt), when k=0,

u′′k +2ξu′k+uk+β
k

∑
i=0

i

∑
j=0

uk−iui−juj, when k≥1,
(2.9)

for the forced Duffing equation (1.1) considered here, and besides

χm =

{
0, when m=1,
1, when m>1.

(2.10)
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The general solution of the linear mth-order deformation equation (2.7) reads

um(t)=χmum−1(t)+c0L−1
[

Rm−1(t)
]
+

µ

∑
n=1

Am,nψn(t), m≥1, (2.11)

where µ is a positive integer, L−1 is the inverse operator of L, Am,n is an arbitary constant,
and ψn(t)∈S is a base function satisfying

L
[ µ

∑
n=1

Am,nψn(t)
]
=0, 1≤n≤µ. (2.12)

In other words, we have

ker[L]=
µ

∑
n=1

Am,nψn(t), (2.13)

say, the kernel of the auxiliary linear operator L is a vector space in dimension µ. Note
that the linear part (1.6) of the original Duffing equation (1.1) is a second-order differential
equation, whose kernel is a vector space in two dimension. However, we have great
freedom to choose the auxiliary linear operator L and its kernel ker[L], as mentioned
below, which might be a breakthrough in nonlinear differential equations.

The Mth-order HAM approximation is given by

u∗≈u0(t)+
M

∑
k=1

uk(t). (2.14)

Since the HAM provides us great freedom to choose the initial guess u0, we can further
use the above Mth-order approximation as a new initial guess, say, u0 = u∗, to gain an-
other Mth-order approximation, and so on. This provides us the Mth-order iteration
approach of the HAM. Note that, for the HAM iteration approach, in order to avoid the
exponential increment in growth of the terms in the solution expression (1.2), we elimi-
nate the terms of cos(ωnt), sin(ωnt) whose coefficients are less than a small value, such
as 10−20 for the forced Duffing equation (1.1) considered in this paper.

It should be emphasized once again that, different from all other approximation
methods (including perturbation techniques), the homotopy analysis method (HAM) can
guarantee the convergence of solution series by means of choosing a proper value of the
so-called “convergence-control parameter” c0. This is the fundamental difference of the
HAM from all other approaches! The optimal value of the “convergence-control param-
eter” c0 is determined by the minimum of the residual error square

E=
∫ T

0

(
N [u(t)]

)2
dt≈ 1

K+1

K

∑
j=0

(
N [u(j∆t)]

)2
, (2.15)

where ∆t=T/(K+1) is a time-step for numerical simulation, T is the period of the limit-
ing cycle for the considered problem, K>0 is a large enough integer, u(t) is an approxi-
mation of limiting cycle of the original equation (1.1),N is the nonlinear operator defined
by (1.1), respectively.
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What is the relationship between perturbation method and the HAM? Generally
speaking, perturbation approach is often a special case of the HAM, if we choose the
perturbation initial approximation as u0, the original linear operator as the auxiliary lin-
ear operator, i.e., L=L0, and besides c0 =−1. For example, when we choose (1.6) as the
auxiliary linear operator L, (1.8) as the initial approximation u0, and besides set c0 =−1,
the kth-order deformation equation (2.7) is exactly the same as the kth-order perturbation
equation mentioned in Section 1. Therefore, the perturbation approach can be indeed
regarded as a special case of the homotopy analysis method! However, the perturbation
approach corresponds to only one choice, but there exist many other much better choices
in the frame of the HAM, which can avoid the “small denominator problems” completely,
as illustrated below.

In summary, the above-mentioned HAM has the following characteristics:

(A). The homotopy-series (2.5) is expanded in the homotopy parameter q∈ [0,1] that has
no physical meanings at all. So, the HAM has nothing to do with any small/large
physical parameters: it works no matter whether small/large physical parameters
exist or not;

(B). The HAM provides us great freedom to choose its auxiliary linear operator;

(C). The HAM provides us great freedom to choose its initial approximation;

(D). The so-called convergence-control parameter c0 has no physical meanings but can
guarantee the convergence of the solution series even for high nonlinearity, as illus-
trated below and verified in many related publications [28–42].

Thus, the HAM can indeed overcome all limitations and restrictions of perturbation
methods.

3 How to avoid “small denominator problem”

As mentioned above, the HAM provides us great freedom to choose the auxiliary linear
operator L and the initial guess u0: it is such kind of freedom that provides us possibility
to avoid the so-called “small denominator problem”, as described below.

3.1 Choice of the auxiliary linear operator

Obviously, for the forced Duffing equation (1.1), the origin of the “small denominator
problem” is mainly due to the original linear operator (1.6), which is unique from the
viewpoint of perturbation theory. So, in order to avoid “small denominator problem”,
we must abandon (1.6) thoroughly. Different from other approximation techniques, the
HAM provides us great freedom to choose an auxiliary linear operatorL, as illustrated by
Liao & Tan [21] and Liao & Zhao [43]. In most applications of the HAM, one often chooses
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a proper auxiliary linear operator L to gain the solution of the high-order deformation
equation (2.7). However, the freedom is so large that we can here directly define its
inverse operator L−1 and the kernel of L in (2.11). In fact, based on the HAM, Liao
and Zhao [43] proposed the so-called “method of directly defining inverse mapping”,
i.e., the MDDiM, which has been successfully applied to solve many types of nonlinear
equations [44–56]. According to the solution expression (1.2) and the definition (2.9) of
Rm(t), the right-hand side of the high-order deformation equation (2.7) contains terms
cos(ωnt) and sin(ωnt), where ωn =(2n−1)Ω. Thus, we directly define here its inverse
operator

L−1
[

Acos(ωnt)+Bsin(ωnt)
]
=

Acos(ωnt)+Bsin(ωnt)
λ2−ω2

n
,
∣∣λ2−ω2

n
∣∣>δ, (3.1)

and its kernel
L
[

A′cos(ωnt)+B′sin(ωnt)
]
=0,

∣∣λ2−ω2
n
∣∣≤δ, (3.2)

for arbitrary constants A, B, A′, B′, where we have great freedom to choose the two pa-
rameters λ>0 and δ≥0. Note that both of L and L−1 are linear, say,

L
[

Acos(ωnt)+Bsin(ωnt)
]
=AL

[
cos(ωnt)

]
+BL

[
sin(ωnt)

]
, (3.3a)

L−1
[

A′cos(ωnt)+B′sin(ωnt)
]
=A′L−1

[
cos(ωnt)

]
+B′L−1

[
sin(ωnt)

]
, (3.3b)

for arbitrary constants A, B, A′ and B′. The above definitions are complete, according to
the so-called “solution-expression” (1.2).

Let
Wλ,δ =

{
ωn :

∣∣λ2−ω2
n
∣∣≤δ

}
(3.4)

denote a set containing all frequencies ωn that satisfies
∣∣λ2−ω2

n
∣∣≤ δ for a given pair of λ

and δ, where ωn =(2n−1)Ω is the frequency defined by (1.3). Then, its inverse operator
(3.1) and the kernel (3.2) of the auxiliary linear operator L can be rewritten by

L−1
[

Acos(ωnt)+Bsin(ωnt)
]
=

Acos(ωnt)+Bsin(ωnt)
λ2−ω2

n
, ωn /∈Wλ,δ, (3.5)

and
L
[

A′cos(ωnt)+B′sin(ωnt)
]
=0, ωn∈Wλ,δ, (3.6)

respectively, where A, B, A′ and B′ are arbitrary constants. Assume that Wλ,δ contains κ
frequencies. Then, the kernel of the auxiliary linear operator L defined by (3.1) and (3.2)
is a vector space in dimension µ=2κ, say,

ker[L]= ∑
ωn∈Wλ,δ

[
An cos(ωnt)+Bn sin(ωnt)

]
(3.7)
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for arbitrary constants An and Bn. Note that, in the frame of the HAM, we have great
freedom to choose the dimension µ that is determined by λ and δ, as mentioned below.
This is completely different from the traditional mathematical theory for a second-order
differential equation. Thus, the general solution of the mth-order deformation equation
(2.7) reads

um(t)=χmum−1(t)+c0L−1
[

Rm−1(t)
]

+ ∑
ωn∈Wλ,δ

[
Am,n cos(ωnt)+Bm,n sin(ωnt)

]
, (3.8)

where Am,n and Bm,n are unknown constants. Note that L−1[Rm−1(t)
]

can be directly
obtained using the inverse operator defined by (3.1) or (3.5), and the term um−1(t) is
known. The unknown constants Am,n and Bm,n are determined via Rm(t) in the way
described below.

According to the definition (3.1) or (3.5) of the inverse operator L−1, Rm(t) can not
contain the terms cos(ωnt) and sin(ωnt), where ωn∈Wλ,δ, since there are no definitions
on them. Substituting um defined by (3.8) into Rm(t) defined by (2.9), we have

Rm(t)=∑
[

Qm,n cos(ωnt)+Sm,n sin(ωnt)
]
. (3.9)

To avoid the appearance of cos(ωnt) and sin(ωnt) terms in the above expression, where
ωn∈Wλ,δ, we had to enforce the following coefficients to be zero:

Qm,n =0, Sm,n =0, ωn∈Wλ,δ, (3.10)

which give us µ=2κ linear algebraic equations that determine the µ=2κ unknown coeffi-
cients Am,n and Bm,n of um defined by (3.8). In this way, we successively gain the solution
um(t) of the mth-order deformation equation (2.7), where m=1,2,3 and so on, without any
small denominators.

According to the definition (3.1) or (3.5) of the linear inverse operator L−1, we can
always choose a proper pair of λ and δ so as to avoid the so-called “small denominator
problem”, as illustrated below in Section 4. Note that it is the HAM [21,43] that provides
us such kind of great freedom.

3.2 Choice of the initial guess

The perturbation method provides us the unique initial guess (1.8), which unfortunately
contains the small denominator (1−ω2)2+4ξ2ω2 when the frequency ω is close to 1 and
ξ is small. It is well-known that perturbation approaches become invalid when small
denominators appear. In addition, in the frame of perturbation techniques, there is no
freedom to choose initial guess. So, we had to abandon the initial guess (1.8) of the
perturbation method.
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In the frame of the HAM, for the limit cycle of the Duffing equation (1.1), all approx-
imations should be in the form of (1.2), called the “solution expression”. So, the initial
guess should agree with the “solution expression” (1.2). Besides, it should contain at
least one or two lowest frequencies, such as cos(ω1t), sin(ω1t), cos(ω2t) and sin(ω2t)
for the forced Duffing equation (1.1). In addition, it should contain the kernel (3.7) of
the auxiliary linear operator L, too. For the forced Duffing equation (1.1), considering
the solution-expression (1.2) and the kernel (3.7) of the auxiliary linear operator L, we
choose the initial guess in the form

u0(t)=
γ

∑
j=1

[
a0,j cos(ωjt)+b0,j sin(ωjt)

]
+ ∑

ωn∈Wλ,δ

[
A0,n cos(ωnt)+B0,n sin(ωnt)

]
, (3.11)

where γ≥ 1 is an integer, and a0,j, b0,j, A0,n, B0,n are unknown constants. Note that the
same terms in the above expression should be combined. All of these unknown constants
in (3.11) are determined in the way mentioned below.

According to (2.9), R0(t)=N [u0(t)] denotes the residual error of the forced Duffing
equation (1.1) for the initial guess u0. So, using the initial guess (3.11), we have

R0=∑
[

Q0,n cos(ωnt)+S0,n sin(ωnt)
]
. (3.12)

To avoid the appearance of the terms cos(ωnt), sin(ωnt) in the above expression, where
ωn∈Wλ,δ as defined by (3.4), we had to enforce the following coefficients to be zero:

Q0,n =0, S0,n =0, ωn∈Wλ,δ, (3.13)

which provides us µ=2κ algebraic equations. Besides, if necessary, we had better enforce
the disappearance of the base functions with the lowest frequencies, such as cos(ω1t),
sin(ω1t), cos(ω2t) and sin(ω2t), in the above expression of R0(t). In this way, all un-
known constants in the initial guess (3.11) could be gained. Note that it is a set of
nonlinear algebraic equations with a few unknowns, which can be solved by means of
some well-known symbolic computation software, such as the commends FindRoot and
NSolve of mathematica.

Assume that, in the iteration approach of the HAM mentioned in Section 2, we have
a known approximation u∗(t). Then, we choose the initial guess

u0(t)=u∗(t)+ ∑
ωn∈Wλ,δ

[
A0,n cos(ωnt)+B0,n sin(ωnt)

]
, (3.14)

where the unknown constants A0,n, B0,n are determined by enforcing the disappearance
of the kernel terms of L in R0(t) in the similar way as mentioned above.
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In this way, we can avoid the “small denominator problem” in the initial guess u0(t),
which occurs for the perturbation initial guess (1.8) when Ω→1 and ξ→0. More impor-
tantly, a set of nonlinear algebraic equations often has multiple solutions, which might
lead to multiple solutions of the limit-cycle for the forced Duffing equation (1.1), as de-
scribed below.

Finally, we should emphasize that it is the HAM that provides us great freedom to
choose the initial guess u0.

4 Some examples

In this section, let us use the forced Duffing equation (1.1) to illustrate the validity and
novelty of the HAM approach mentioned in Sections 2 and 3. Without loss of generality,
let us consider the case of α= 1, Ω= 1/3 but various values of β and ξ. Note that β is a
measurement of the nonlinearity of the forced Duffing equation (1.1): the larger the value
of β, the higher the nonlinearity of the forced Duffing equation (1.1).

Since Ω = 1/3 is fixed, we always have ω2 = 3Ω = 1. Thus, from the viewpoint of
perturbation techniques, the so-called “small denominator problem” happens when ξ is
small, such as 10−4 ≤ ξ ≤ 10−2, so that the perturbation method fails, as mentioned in
Section 1. However, we illustrate here that such kind of “small denominator problem”
never appears in the frame of the HAM approach, as long as we properly choose a pair
of λ and δ.

Since Ω=1/3 and ωn =(2n−1)Ω, we have

ω1=
1
3

, ω2=1, ω3=
5
3

, ω4=
7
3

, ω5=3, ω6=
11
3

,··· , (4.1)

in this paper. In theory, there are an infinite number of ways to choose the values of λ
and δ. In this section, we just consider the following two cases:

(a). λ=
√

2 and δ=0;

(b). λ=ω1 and δ=
∣∣∣ω2

1−ω2
κ

∣∣∣ with κ≥1.

All of them can completely avoid the so-called “small denominator problem”.

4.1 In case of λ=
√

2 and δ=0

In case of λ=
√

2, according to the definitions (3.1) and (1.3), we have the denominator

λ2−ω2
n =2− (2n−1)2

9
=

17+4n−4n2

9
. (4.2)

Setting |λ2−ω2
n|= δ=0, we have the two solutions n≈2.62132 and n≈−1.62132, which

however are not positive integers. Thus, nothing belongs to the set Wλ,δ when we choose
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λ=
√

2 and δ=0, say, its kernel of the corresponding auxiliary linear operator L has noth-
ing, say, ker[L]=∅, corresponding to Wλ,δ=∅. Besides, the corresponding denominators
(λ2−ω2

n) read
17
9

, 1, −7
9

, −31
9

, −7, −103
9

,··· ,

which are far away from zero, and therefore all denominators are not small so that the
“small denominator problem” does not appear at all for arbitrary values of α, β and ξ.

In fact, in the case of λ=
√

2 and δ=0, the definitions (3.1) and (3.2) are equivalent to
such an auxiliary linear operator

L[u]=u′′+2u, (4.3)

with the property

L
[

Acos
(√

2t
)
+Bsin

(√
2t
)]

=0, (4.4)

whose inverse operator reads

L−1
[

A′cos(ωnt)+B′sin(ωnt)
]
=

A′cos(ωnt)+B′sin(ωnt)
2−ω2

n
, n≥1, (4.5)

where A, B, A′, B′ are arbitrary constants. Note that (4.3) has no relationship with the
original linear operator L0 defined by (1.6).

In general, letting n≥1 be an integer, one can choose λ=2nΩ, which is far away from
all ωn=(2n−1)Ω, since λ−ωn=ωn+1−λ=Ω. So, in theory there are an infinite number of
ways to choose a proper λ (and δ=0) so that the so-called “small denominator problem”
never appears for the forced Duffing equation (1.1)!

Note that the solution of the mth-order deformation equation (2.7) does not contain
the terms cos(

√
2t) and sin(

√
2t), since they do not agree with the solution expression

(1.2) and thus must be disappeared. This agrees with the conclusion that the kernel of
the corresponding auxiliary linear operator L is an empty set, say, ker[L]=∅. Thus, the
solution of the mth-order deformation equation (2.7) reads

um(t)=χmum−1(t)+c0L−1 [Rm−1(t)], m≥1. (4.6)

According to (3.11), since ker[L]=∅, we choose the initial guess in the form

u0(t)=
2

∑
n=1

[a0,n cos(ωnt)+b0,n sin(ωnt)], (4.7)

where the four unknown constants a0,n, b0,n, (n= 1,2) are determined by enforcing the
disappearance of the terms cos(ω1t), sin(ω1t), cos(ω2t) and sin(ω2t) in R0(t). For details,
please refer to Subsection 3.2.

Without loss of generality, let us first consider here the case of α= 1, β= 1, Ω= 1/3
and ξ = 10−4, corresponding to the “small denominator problem” from the viewpoint
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Figure 1: Residual error square of the forced Duffing equation (1.1) for u(t) at different orders of approximation
versus the convergence-control parameter c0 in case of α=1, β=1, Ω=1/3 with different values of ξ, given

by the HAM approach in the case of λ =
√

2 and δ = 0 described in Subsection 4.1. Solid line: 1st-order
approximation; Dashed-line: 2nd-order approximation; Dash-dotted line: 3rd-order approximation. (a) ξ=10−4

using the initial guess (4.8); (b) ξ=0.1.

of perturbation method. Following the method described in Subsection 3.2, we have its
corresponding initial guess

u0(t)=0.775251cos(ω1t)−0.127485cos(ω2t)

+4.98191×10−5sin(ω1t)−5.24821×10−5sin(ω2t), (4.8)

which is the unique real solution of the related set of nonlinear algebraic equations.
Although all physical parameters are given, we always have one unknown param-

eter, i.e., the convergence-control parameter c0, which has no physical means but can
guarantee the convergence of solution series given by the HAM. To choose an optimal
value of c0, we check the residual error squares of the first several orders of approxima-
tion, defined by (2.15), as shown in Fig. 1, which give us the optimal value c0 ≈−0.9
for the considered case. It is found that, using c0 =−0.9, the corresponding solution se-
ries indeed converge very quickly: the residual error square decreases about 20 orders
of magnitude at the 30th-order of approximation, say, from 1.2×10−3 at the very begin-
ning to 4.1×10−23, as shown in Table 1. In fact, the 10th-order approximation already
agrees quite well with the 30th-order approximation, as shown in Fig. 2. Similarly, we
also check the validity of our HAM approach in the case of ξ = 0, 0.01 and 0.1, respec-
tively, with α= 1, Ω= 1/3 and β= 1. In all of these cases, the solution series converge
rather quickly, as shown in Table 1. It is found that, given fixed values of α, β and Ω, the
series solutions for small values of 0≤ ξ≤0.01 are almost the same, and the solution se-



S. Liao / Adv. Appl. Math. Mech., 15 (2023), pp. 267-299 281

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8
­0.4

­0.2

0

0.2

0.4 α = 1, β = 1, Ω  = 1/3, ξ = 0.0001

(a)

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8
­0.4

­0.2

0

0.2

0.4 α = 1, β = 1, Ω  = 1/3, ξ = 0.1 

(b)

Figure 2: Convergent series solutions of limit-cycle of the forced Duffing equation (1.1) in cases of α=1, β=1,
Ω= 1/3 and different values of ξ. Symbols: 10th-order approximation; Solid line: 30th-order approximation.
(a) ξ=10−4 using c0 =−0.9 and the initial guess (4.8); (b) ξ=1/10 using c0 =−0.8.
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Figure 3: Residual error square of the forced Duffing equation (1.1) versus the times of iteration in case of

α=1, β=1 and Ω=1/3, given by the HAM iteration approach in the case of λ=
√

2 and δ=0 described in
Subsection 4.1. Cycle: the 1st-order HAM iteration; Square: the 2nd-order HAM iteration; Delta: the 3rd-order
HAM iteration. (a) ξ=0.0001 using c0 =−0.9 and the initial guess (4.8); (b) ξ=0.1 using c0 =−0.8.

ries converges almost at the same rate, as shown in Table 1. This is reasonable in physics,
because the small resistance coefficient ξ has a very small influence on the limit-cycle. All
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Table 1: Residual error square of the forced Duffing equation (1.1) for u(t) at different order of approximations

in case of α=1, β=1, Ω=1/3 and different values of ξ, given by the HAM approach in the case of λ=
√

2
and δ=0 described in Subsection 4.1.

Order of ξ=0 ξ=10−4 ξ=0.01 ξ=0.1
approximation c0=−9/10 c0=−9/10 c0=−9/10 c0=−8/10

0 1.2E-3 1.2E-3 1.2E-3 4.9E-4
1 4.1E-4 4.1E-4 4.1E-4 4.4E-4
3 5.3E-6 5.3E-6 5.2E-6 2.5E-5
5 2.4E-7 2.4E-7 2.5E-7 2.1E-6

10 9.5E-11 9.5E-11 1.0E-10 4.6E-9
15 4.0E-14 4.0E-14 4.7E-14 1.4E-11
20 4.2E-17 4.2E-17 4.8E-17 5.1E-14
25 5.7E-20 5.7E-20 6.7E-20 2.1E-16
30 4.1E-23 4.1E-23 5.3E-23 9.1E-19

of these illustrate the validity of the HAM approach mentioned above.
As mentioned in Subsection 3.2, one Mth-order HAM approximation can be used as

a new initial guess to gain a better approximation, and so on. As shown in Fig. 3, in case
of α=1, β=1, Ω=1/3 and ξ=0.0001, using the initial guess (4.8), we gain the convergent
series solution by means of the first, second and third-order HAM iteration approach,
and the corresponding residual error square decreases rather quickly: from 1.2×10−3 at
the beginning to 10−23 at the 16 iterations for the 2nd-order formula, or at the 11 iterations
for the 3rd-order formula, respectively. It is found that the higher the order of the HAM
iteration approach, the faster the solution series converges. Similarly, in case of ξ = 0.1,
the iteration also converges rather quickly, as shown in Fig. 3. So, choosing an optimal
convergence-control parameter c0 and using HAM iteration approach, we can quickly
gain the convergent series solution of the limiting cycle of the forced Duffing equation
(1.1) by means of the HAM approach described in Sections 2 and 3. This illustrates the
validity of our HAM iteration approach.

As shown in Fig. 3, the residual error square stops decreasing at the order of magni-
tude 10−23. This is mainly because, in the solution expression (1.2) of the limiting cycle
u(t), we delete all terms an cos(ωnt) and bn sin(ωnt), when |an|< ε and |bn|< ε, where
we choose ε= 10−20 in this paper. This is specially necessary for the HAM iteration ap-
proach, otherwise the number of the base-functions increases exponentially so that the
HAM iteration approach can not work. It is found that, when a smaller value of ε such
as ε= 10−30 is used, the residual error square stops decreasing at a much smaller level.
However, for the problem considered in this paper, ε=10−20 is small enough for the cases
under consideration.

Note that, from the viewpoint of perturbation method, the “small denominator prob-
lem” occurs when α=1, β=1, Ω=1/3 and 0.0001≤ξ≤0.01. However, as shown in Table 1,
the series solutions given by our HAM approach converge almost in the same rate in case
of 0≤ ξ≤0.01. Therefore, our HAM approach indeed can avoid the small denominators.
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In other words, from the viewpoint of the HAM approach (in the case of λ=2 and δ=0),
the so-called “small denominator problem” does not really exist at all: they are just the
artifacts of perturbation methods.

4.2 In case of λ=ω1 and δ=
∣∣ω2

1−ω2
κ

∣∣ with κ≥1

Let us further consider the case λ = ω1 and δ =
∣∣ω2

1−ω2
κ

∣∣= ω2
κ−ω2

1, where κ≥ 1 is an
integer. According to (3.2), |λ2−ω2

n|≤δ leads to the following equation

ω2
n−ω2

1≤ω2
κ−ω2

1, n≥1, (4.9)

which holds for 1≤n≤κ. Thus, the corresponding set Wλ,δ has κ members, say,

Wλ,δ =
{

ω1,ω2,··· ,ωκ

}
. (4.10)

In this case, (3.1) and (3.2) are equivalent to the following definitions:

L−1
[

Acos(ωnt)+Bsin(ωnt)
]
=

Acos(ωnt)+Bsin(ωnt)
ω2

1−ω2
n

, n>κ, (4.11)

and

L
{

κ

∑
n=1

[
A′m,n cos(ωnt)+B′m,n sin(ωnt)

]}
=0, (4.12)

for arbitrary constants A, B, A′m,n, B′m,n, where we have great freedom to choose the value
of κ. According to (4.12), the kernel of the corresponding linear operator is a vector space
with µ=2κ dimension, say,

ker[L]=
κ

∑
n=1

[
A′m,n cos(ωnt)+B′m,n sin(ωnt)

]
. (4.13)

Thus, in this case, the solution of the mth-order deformation equation (2.7) reads

um(t)=χmum−1(t)+c0L−1
[

Rm−1(t)
]
+

κ

∑
n=1

[
A′m,n cos(ωnt)+B′m,n sin(ωnt)

]
, (4.14)

where A′m,n and B′m,n are 2κ unknown constants, which are determined by enforcing the
coefficients of cos(ωnt) and sin(ωnt) in Rm(t) being zero, where 1≤n≤κ.

In this case, we choose the initial guess in the form

u0(t)=
max{2,κ}

∑
n=1

[
a0,n cos(ωnt)+b0,n sin(ωnt)

]
, (4.15)

where the unknown coefficients a0,n and b0,n are determined by enforcing the coefficients
of cos(ωnt) and sin(ωnt) in R0(t) being zero, where 1≤n≤max{2,κ}.
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It should be emphasized here that κ can be greater than 1, since we have great freedom
to choose its value! For example, when κ=2, ker[L], i.e., the kernel of the corresponding
auxiliary linear operator L, is a vector space of 4 dimension. When κ=3, ker[L] is a vec-
tor space of 6 dimension! Note that the forced Duffing equation (1.1) is just a 2nd-order
nonlinear differential equation. In the frame of the perturbation method, the forced Duff-
ing equation (1.1) is transferred into an infinite number of 2nd-order linear differential
equations, as shown in Section 1. Note also that, according to the traditional mathemat-
ical theory, the kernel of a second-order linear differential operator is a vector space of
2 dimension only. Thus, in case of κ > 1, our HAM approach is beyond the traditional
mathematical theory about differential equations. This also indicates the novelty of our
HAM approach in mathematics.

4.2.1 Results when κ=2

In this case, we have δ=ω2
2−ω2

1 and that the kernel of the corresponding auxiliary linear
operator L is a vector space of 4 dimension, say,

ker[L]=
2

∑
n=1

[An cos(ωnt)+Bn sin(ωnt)], (4.16)

where An and Bn are arbitrary constants.
Without loss of generality, let us consider the case of α = 1, β = 1, Ω = 1/3 and ξ =

10−4. According to (4.15), we can choose the same initial guess as (4.8), since they have
the same physical parameters. Note that, unlike all other approximation methods, the
HAM contains the so-called “convergence-control parameter” c0, which has no physical
meanings but can guarantee the convergence of the solution series. As shown in Fig. 4,
the optimal convergence-control parameter is about c0≈−1.5. Using c0 =−3/2 and the
initial guess (4.8), the corresponding series solution converges very quickly, from 1.2×

Table 2: Residual error square of u(t) at different order of approximations of the forced Duffing equation (1.1)
in case of α=1, β=1, Ω=1/3 and different values of ξ, given by the HAM approach described in Subsection 4.2

when λ=ω2
1 and δ=ω2

2−ω2
1.

Order of ξ=0 ξ=10−4 ξ=0.01 ξ=0.1
approximation c0=−3/2 c0=−3/2 c0=−3/2 c0=−8/5

0 1.2E-3 1.2E-3 1.2E-3 1.1E-3
1 4.0E-4 4.0E-4 4.0E-4 4.1E-4
3 1.2E-5 1.2E-5 1.2E-5 1.7E-5
5 5.2E-7 5.2E-7 5.2E-7 1.3E-6
10 1.7E-10 1.7E-10 1.7E-10 1.4E-9
15 1.3E-13 1.3E-13 1.3E-13 2.0E-12
20 6.4E-17 6.4E-17 6.4E-17 3.6E-15
25 1.2E-19 1.2E-19 1.2E-19 7.6E-18
30 7.9E-23 7.9E-23 7.9E-23 1.7E-20
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Figure 4: Residual error squares of approximations of u(t) at different-orders versus the convergence-control
parameter c0 in case of α=1, β=1, Ω=1/3 with different values of ξ, given by the HAM approach described

in Subsection 4.2 when λ=ω1 and δ=ω2
2−ω2

1. Solid line: 2nd-order approximation; Dashed-line: 3rd-order

approximation; Dash-dotted line: 4th-order approximation. (a) ξ=10−4 using the initial guess (4.8); (b) ξ=0.1.

10−3 at the beginning to 7.9×10−23 at the 30th-order of approximation, about 20 orders of
magnitude less, as shown in Table 2. Similarly, the solution series converge very quickly
for ξ=0,0.01 and 0.1, as shown in Table 2. It is found that the corresponding limit-cycles
given by λ=ω1 and δ=ω2

2−ω2
1 in case of ξ =0.0001 and ξ =0.1 are exactly the same as

(a) and (b) in Fig. 2 given by λ= 2 and δ= 0, respectively. In addition, the 2nd, 3rd and
4th-order HAM iteration formulas also give convergent series solutions rather quickly, as
shown in Fig. 5. It is found again that, the higher the order of iteration formula, the faster
the solution series converges.

All of these confirm the validity of the HAM approach described in Subsection 4.2. It
is important that, in the case of λ=ω1 and δ=ω2

2−ω2
1, our HAM approach has nothing

to do with the so-called “small denominators”! In other words, the “small denominator
problem” never appears from the viewpoint of the HAM.

Note that, according to traditional mathematical theories, a linear differential oper-
ator L, whose kernel is the same as the vector space of 4 dimension defined by (4.16),
should correspond to the 4th-order differential equation

L[u]=u(4)+
(
ω2

1+ω2
2
)

u′′+ω2
1ω2

2u=0, (4.17)

whose inverse operator reads

L−1
[

Acos(ωt)+Bsin(ωt)
]
=

Acos(ωt)+Bsin(ωt)
(ω2−ω2

1)(ω
2−ω2

2)
, ω /∈{ω1,ω2}, (4.18)
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Figure 5: Residual error square of the forced Duffing equation (1.1) versus the times of iteration in case of α=1,
β=1, Ω=1/3, given by the HAM approach described in Subsection 4.2 when λ=ω1 and δ=ω2

2−ω2
1. Cycle:

the 2nd-order HAM iteration; Square: the 3rd-order HAM iteration; Delta: the 4th-order HAM iteration. (a)
ξ=0.0001 using the initial guess (4.8) and c0 =−3/2; (b) ξ=0.1 using c0 =−8/5.

for arbitrary constants A and B. However, the above expression is obviously different from
our inverse operator (4.11) that looks like one for a 2nd-order linear differential equation!
In fact, we even do not know how to explicitly express the corresponding auxiliary linear
operator L when κ = 2, say, λ = ω1 and δ = ω2

2−ω2
1 in the HAM approach described

in Subsection 4.2, but fortunately it is unnecessary to know it in the frame of the HAM!
The most important fact is that our HAM-based approach is valid and the corresponding
solution series of the limiting cycle converge quickly, as shown in Table 2 and Figs. 4 and
5. This verifies the validity and novelty of our HAM approach mentioned above.

4.2.2 Results when κ=3

In this case we have δ = ω2
3−ω2

1 and the kernel of the auxiliary linear operator L is a
vector space of 6 dimensions, say,

ker[L]=
3

∑
n=1

[An cos(ωnt)+Bn sin(ωnt)], (4.19)

where An and Bn are arbitrary constants.
Besides, according to (4.15), the initial guess should be in the form

u0(t)=
3

∑
n=1

[
a0,n cos(ωnt)+b0,n sin(ωnt)

]
. (4.20)
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Substituting it into the forced Duffing equation (1.1) and enforcing the coefficients of the
terms cos(ωnt) and sin(ωnt), (n=1,2,3) being zero, we have a set of six nonlinear alge-
braic equations, whose real solutions determine the six unknown constants in (4.20). It
is interesting that the set of these six nonlinear algebraic equations has multiple real so-
lutions (complex solutions have no physical meanings here) in many cases, for example,
such as α=1, ξ=0, Ω=1/3 but a large value of β, i.e., β=5:

a0,1=0.333781, a0,2=0.107352, a0,3=−0.509166, (4.21a)
a0,1=0.526136, a0,2=−0.11976, a0,3=0.181401, (4.21b)
a0,1=0.482000, a0,2=0.0264671, a0,3=−0.200815, (4.21c)

with b0,1=b0,2=b0,3=0, respectively, corresponding to the three initial guesses in the form
(4.20).

Using the initial guess (4.21a) and the corresponding optimal convergence-control
parameter c0=−1, we gain a convergent series solution, shown as (a) in Fig. 6, by means
of the 2nd-order HAM iteration: the residual error square of the forced Duffing equation
(1.1) decreases from 0.11 at the beginning to 4.9×10−22 at the 30th iteration.

Using the initial guess (4.21b) and the corresponding optimal convergence-control
parameter c0 =−3/2, we gain the convergent series solution, shown as (b) in Fig. 6, by
means of the 2nd-order HAM iteration: the residual error square of the forced Duffing
equation (1.1) decreases from 0.11 at the beginning to 2.1×10−30 at the 20th iteration.

Using the initial guess (4.21c) and the corresponding optimal convergence-control
parameter c0 =−1, we gain the convergent series solution, shown as (c) in Fig. 6, by
means of the 2nd-order HAM iteration: the residual error square of the forced Duffing
equation (1.1) decreases from 0.11 at the beginning to 7.7×10−30 at the 30th iteration.

It is interesting that we have the three initial guesses (4.21a)-(4.21c) in the case of
κ= 3, which give us three different limit-cycles, as shown in (a), (b) and (c) of Fig. 6, re-
spectively. It should be emphasized that, it is the HAM that provides us such kind of
great freedom to choose the initial guess. Note also that, in the frame of the perturbation
method, there exists the unique initial guess (1.8) only, and thus in theory it is impossi-
ble to find these multiple limit-cycles by the perturbation method†. This illustrates the
advantages and novelty of the HAM beyond perturbation.

Note that the forced Duffing equation (1.1) contains the nonlinear term βu3. So, the
larger the value of β, the higher the nonlinearity of the Duffing equation. As mentioned
in Section 1, the perturbation approach is invalid even for β≥0.012 and small ξ. However,
using our HAM approach in a similar way, we can gain convergent series solution even
in the cases with rather high nonlinearity, such as α = 1, Ω = 1/3, ξ = 0 and 10≤ β≤
40, as shown in Fig. 7. It is found that, when κ = 3, using the approach mentioned in

†In fact, as mentioned in Section 1, the unique perturbation series diverges even when β= 0.012 in case of
Ω=1/3 and α=1, corresponding to a very weak nonlinearity.



288 S. Liao / Adv. Appl. Math. Mech., 15 (2023), pp. 267-299

­1.2 ­0.9 ­0.6 ­0.3 0 0.3 0.6 0.9 1.2
­1.2

­0.9

­0.6

­0.3

0

0.3

0.6

0.9

1.2 α = 1, β = 5, Ω  = 1/3, ξ = 0

(a)

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8
­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8 α = 1, β = 5, Ω  = 1/3, ξ = 0 

(b)

­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8
­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8 α = 1, β = 5, Ω  = 1/3, ξ = 0 

(c)

u
’(

t)

­1.5 ­1 ­0.5 0 0.5 1 1.5
­2.5

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

2.5  α = 1, β = 5, Ω  = 1/3, ξ = 0 

(d)

Figure 6: Multiple limit-cycles of the forced Duffing equation (1.1) in cases of α=1, Ω=1/3, ξ=0 and β=5,

given by the 2nd-order HAM iteration described in Subsection 4.2 when λ=ω1 and δ=ω2
κ−ω2

1. (a) using the
initial guess (4.21a), c0 =−1 and κ=3; (b) using the initial guess (4.21b), c0 =−3/2 and κ=3; (c) using the
initial guess (4.21c), c0 =−1 and κ=3; (d) using the initial guess (4.27d), c0 =−1 and κ=4.

Subsection 3.2, there exist only one initial guess in the form (4.20) for each β∈ [10,40], say,

β=10 : a0,1=0.450482, a0,2=−0.0931627, a0,3=0.0779936, (4.22a)
β=20 : a0,1=0.371919, a0,2=−0.0737289, a0,3=0.0477389, (4.22b)
β=30 : a0,1=0.330788, a0,2=−0.0646278, a0,3=0.0380275, (4.22c)
β=40 : a0,1=0.303900, a0,2=−0.0589144, a0,3=0.0328625, (4.22d)
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Figure 7: Multiple limit-cycles of the forced Duffing equation (1.1) in cases of α=1, Ω=1/3, ξ =0 and some
large values of β, given by the 2nd-order HAM iteration described in Subsection 4.2 when λ=ω1 and δ=ω2

3−ω2
1,

corresponding to κ=3. (a) β=10 using the unique initial guess (4.22a) and c0 =−3/2; (b) β=20 using the
unique initial guess (4.22b) and c0=−1/2; (c) β=30 using the unique initial guess (4.22c) and c0=−1/5; (d)
β=40 using the unique initial guess (4.22d) and c0 =−1/25.

where b0,n=0 for n=1,2,3, corresponding to the four initial guesses in the form (4.20). In
all of these cases, the convergent series solutions are obtained by means of the 2nd-order
HAM iteration using a proper convergence-control parameter c0, as shown in Fig. 7.
Thus, our HAM approach is indeed valid for high nonlinearity. Besides, it should be
emphasized that the “small denominator problem” never appears in all cases. This illus-
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trates the validity of the HAM approach for high nonlinearity in the case of λ=ω1 and
δ=ω2

3−ω2
1 and its advantages beyond perturbation.

Note that, according to traditional mathematical theories, a linear differential oper-
ator L, whose kernel is the same as the vector space of 6 dimension defined by (4.19),
should correspond to the 6th-order differential equation

L[u]=u(6)+
(
ω2

1+ω2
2+ω2

3
)

u(4)

+
(
ω2

1ω2
2+ω2

1ω2
3+ω2

2ω2
3
)

u′′+ω2
1ω2

2ω2
3u=0, (4.23)

whose inverse operator reads

L−1
[

Acos(ωt)+Bsin(ωt)
]

=
Acos(ωt)+Bsin(ωt)

(ω2−ω2
1)(ω

2−ω2
2)(ω

2−ω2
3)

, ω /∈{ω1,ω2,ω3}, (4.24)

for arbitrary constants A and B. However, the above expression is obviously different from
our inverse operator (4.11) that looks like one for a 2nd-order linear differential equation!
In fact, we even do not know how to explicitly express the corresponding auxiliary linear
operatorLwhen κ=3, say, λ=ω1 and δ=ω2

3−ω2
1, but fortunately it is unnecessary to know

it in the frame of the HAM. The most important fact is that our HAM-based approach is
valid and the corresponding solution series converge quickly, as mentioned above, which
verifies the validity and novelty of our HAM approach.

4.2.3 Results given by κ=4

In this case, we have λ = ω1 and δ = ω2
4−ω2

1 so that the kernel of the corresponding
auxiliary linear operator L is a vector space of 8 dimensions, say,

ker[L]=
4

∑
n=1

[An cos(ωnt)+Bn sin(ωnt)], (4.25)

where An and Bn are arbitrary constants.
According to (4.15), the initial guess should be in the form

u0(t)=
4

∑
n=1

[
a0,n cos(ωnt)+b0,n sin(ωnt)

]
. (4.26)

Substituting it into the forced Duffing equation (1.1) and enforcing the coefficients of the
terms cos(ωnt) and sin(ωnt), (n=1,2,3,4) being zero, we have a set of eight nonlinear al-
gebraic equations, whose real solutions determine the eight unknown constants in (4.26).
It is found that the set of these eight nonlinear algebraic equations has four real solutions
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in the case of α=1,Ω=1/3, ξ=0 and β=5:

a0,1=0.261766, a0,2=0.0766644, a0,3=−0.563565, a0,4=−0.0899237, (4.27a)
a0,1=0.524251, a0,2=−0.119311, a0,3=0.150425, a0,4=0.0487805, (4.27b)
a0,1=0.420975, a0,2=0.0508348, a0,3=−0.278947, a0,4=−0.0849981, (4.27c)
a0,1=0.104111, a0,2=0.000412556, a0,3=−0.00628524, a0,4=1.07865, (4.27d)

where b0,n=0 for n=1,2,3,4, corresponding to the four initial guesses in the form (4.26).
Using the initial guess (4.27a) and the convergence-control parameter c0 =−2/3, we

gain a convergent series solution of the limiting cycle, which is exactly the same as (a)
in Fig. 6, by means of the 2nd-order HAM iteration: the residual error square of the
forced Duffing equation (1.1) decreases from 0.14 at the beginning to 3.6×10−30 at the
30th iteration.

Using the initial guess (4.27b) and the convergence-control parameter c0=−1, we gain
a convergent series solution of the limiting cycle, which is exactly the same as (b) in Fig. 6,
by means of the 2nd-order HAM iteration: the residual error square of the forced Duffing
equation (1.1) decreases from 0.021 at the beginning to 8.4×10−30 at the 15th iteration.

Using the initial guess (4.27c) and c0 =−3/2, we gain a convergent series solution of
the limiting cycle, which is exactly the same as (c) in Fig. 6, by means of the 2nd-order
HAM iteration: the residual error square of the forced Duffing equation (1.1) decreases
from 0.022 at the beginning to 6.6×10−30 at the 20th iteration.

Using the initial guess (4.27d) and c0 =−1, we gain a new convergent series solution,
shown as (d) in Fig. 6, by means of the 2nd-order HAM iteration: the residual error square
of the forced Duffing equation (1.1) decreases from 1.48 at the beginning to 5.6×10−16 at
the 30th iteration. It is interesting that this is a new solution, which is however not found
by means of λ=ω1 and κ=3. This is mainly because, when κ=4, we should solve two
more nonlinear algebraic equations to gain the initial guess than the case of κ = 3. This
leads to one more initial guess that gives one more limit-cycle by means of the HAM
approach described in this paper. It seems that, in the frame of the HAM described in
Sections 2 and 3, the larger the value of δ, the greater the possibility to find multiple
solutions (if they indeed exist). This further shows the validity and novelty of our HAM
approach beyond perturbation.

As shown in Fig. 7, for a given β∈ [10,40] (corresponding to high nonlinearity), only
one limit-cycle is found by the HAM approach using λ=ω1 and δ=ω2

3−ω2
1, correspond-

ing to κ=3. Do multiple limit-cycles exist in high nonlinearity, say, for a large β? Without
loss of generality, let us consider the case of α= 1,Ω= 1/3,ξ = 0 and β= 40. It is found
that, when κ=4, we have the four corresponding initial guesses in the form of (4.26):

a0,1=0.131123, a0,2=−0.00645067, a0,3=−0.0312269, a0,4=0.336815, (4.28a)
a0,1=0.287691, a0,2=−0.0231836, a0,3=−0.0268927, a0,4=0.0697927, (4.28b)
a0,1=0.296537, a0,2=−0.0580039, a0,3=0.0566195, a0,4=−0.0810271, (4.28c)
a0,1=0.261690, a0,2=−0.0276672, a0,3=0.0714539, a0,4=−0.156464, (4.28d)
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Figure 8: Multiple limit-cycles of the Duffing equation (1.1) in cases of α=1, Ω=1/3, ξ=0 and β=40, given

by the HAM iteration approach described in Subsection 4.2 when λ=ω1 and δ=ω2
4−ω2

1. (a) using the initial
guess (4.28a) and c0 =−3/2; (b) using the initial guess (4.28b) and c0 =−4/5; (c) using the initial guess
(4.28c) and c0 =−4/5; (d) using the initial guess (4.28d) and c0 =−1.

where b0,n =0, (n=1,2,3,4).

Using the initial guess (4.28a) and c0 =−3/2, we gain a convergent series solution,
shown as (a) in Fig. 8, by means of the 5th-order HAM iteration: the residual error square
of the forced Duffing equation (1.1) decreases from 0.26 at the beginning to 10−21 at the
10th iterations.
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Using the initial guess (4.28b) and c0 =−4/5, we gain a convergent series solution,
shown as (b) in Fig. 8, by means of the 5th-order HAM iteration: the residual error square
of the forced Duffing equation (1.1) decreases from 0.016 at the beginning to 2.7×10−17

at the 10th iterations. This limit-cycle is exactly the same as (d) in Fig. 7, the only one
limit-cycle when β=40 given by means of λ=ω1 and δ=ω2

3−ω2
1, corresponding to κ=3.

Using the initial guess (4.28c) and c0 =−4/5, we gain a convergent series solution,
shown as (c) in Fig. 8, by means of the 5th-order HAM iteration: the residual error square
of the forced Duffing equation (1.1) decreases from 0.013 at the beginning to 8.1×10−17

at the 10th iterations.
Using the initial guess (4.28d) and c0 = −1, we gain a convergent series solution,

shown as (d) in Fig. 8, by means of the 5th-order HAM iteration: the residual error square
of the forced Duffing equation (1.1) decreases from 0.044 at the beginning to 6.4×10−21

at the 10th iterations.
Note that when κ= 3, i.e., λ=ω1 and δ=ω2

3−ω2
1, we found only one limit-cycle for

β∈ [10,40]. However, when κ=4, i.e., λ=ω1 and δ=ω2
4−ω2

1, we successfully gain four
limit-cycles in the case of β = 40, corresponding to a very high nonlinearity. It seems
that, the larger the value of κ, say, the larger of δ, more limit-cycles of the forced Duffing
equation (1.1) could be found. Note that β= 40 corresponds to a high nonlinearity: this
verifies the validity of our HAM approach for high nonlinearity. This is one of advan-
tages of the HAM, which has been proved in many articles (for example, please refer to
Zhong and Liao [26]). In summary, all of these results illustrate the validity and novelty
of our HAM approach described in Sections 2 and 3. Note that the so-called “small de-
nominator problem” never appears for the forced Duffing equation (1.1) by means of the
HAM approach.

Note that, according to traditional mathematical theories, a linear differential oper-
ator L, whose kernel is the same as the vector space of 8 dimension defined by (4.25),
should correspond to the 8th-order differential equation

L[u]=u(8)+
(
ω2

1+ω2
2+ω2

3+ω2
4
)

u(6)

+
(
ω2

1ω2
2+ω2

1ω2
3+ω2

1ω2
4+ω2

2ω2
3++ω2

2ω2
4++ω2

3ω2
4
)

u(4)

+
(
ω2

1ω2
2ω2

3+ω2
1ω2

2ω2
4+ω2

1ω2
3ω2

4+ω2
2ω2

3ω2
4
)

u′′

+ω2
1ω2

2ω2
3ω2

4u=0, (4.29)

whose inverse operator reads

L−1
[

Acos(ωt)+Bsin(ωt)
]

=
Acos(ωt)+Bsin(ωt)

(ω2−ω2
1)(ω

2−ω2
2)(ω

2−ω2
3)(ω

2−ω2
4)

, ω /∈{ω1,ω2,ω3,ω4}, (4.30)

for arbitrary constants A and B. However, the above expression is obviously different
from our inverse operator (4.11) that looks like one for a 2nd-order linear differential
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equation! In fact, we even do not know how to explicitly express the corresponding
auxiliary linear operator L when κ = 4, say, λ = ω1 and δ = ω2

4−ω2
1, but fortunately it

is unnecessary to know it in the frame of the HAM. The most important fact is that our
HAM-based approach is valid and the corresponding solution series of the limiting cycles
converge quickly, as mentioned above, which verifies the validity and novelty of our
HAM approach mentioned in Sections 2 and 3.

5 Discussions and concluding remarks

First of all, when perturbation method is used to solve the forced Duffing equation (1.1),
the so-called “small denominator problem” is unavoidable when ω→1 and ξ→0, which
leads to the divergence of the perturbative series even for rather small β, corresponding
to a very weak nonlinearity. However, for the HAM approach described in Sections 2
and 3, such kind of small denominators never appear for arbitrary values of physical
parameters α, β, ω and ξ so that the so-called “small denominator problem” never occurs!
Note that even in the case of large β, corresponding to high nonlinearity, multiple limit-
cycles are successfully found by our HAM approach. All of these illustrate the validity
and novelty of the HAM approach. Thus, from the viewpoint of the HAM approach
described in this paper, the so-called “small denominator problem” does not really exist!
This suggests that whether or not the so-called “small denominator problem” really exists
should highly depend on the used method: it indeed exists for perturbation methods,
but not for the HAM! Thus, the origin of the so-called “small denominator problem”
comes from the limitations and restrictions of perturbation method as a methodology. In
other words, the “small denominator problem” is only an artifact of perturbation method.
Thus, abandoning perturbation method but using the HAM, we can completely avoid
the “small denominator problem”. Note that the “small denominator problem” has been
regarded as a huge obstacle for many open problems in science. So, the HAM provides
us a new way to attack them.

Secondly, unlike all other approximation techniques (including perturbation meth-
ods), we can directly define the inverse operator L−1 of an undetermined linear opera-
tor in the frame of the HAM so as to easily gain the solutions of the linear high-order
equations. It should be emphasized that it is the HAM that provides us such kind of
great freedom [21, 43]. Using such kind of freedom, the so-called “small denominator
problem” can be completely avoided, as illustrated in this paper. Note that, according
to traditional mathematical theories, a linear differential operator L, whose kernel is a
vector space of 4 dimension defined by (4.16), should correspond to the 4th-order lin-
ear differential equation (4.17), whose inverse operator should be expressed by (4.18).
Similarly, a linear differential operator L, whose kernel is a vector space of 6 dimension
defined by (4.19), should correspond to the 6th-order linear differential equation (4.23),
whose inverse operator should be expressed by (4.24). In addition, a linear differential
operator L, whose kernel is a vector space of 8 dimension defined by (4.25), should corre-
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spond to the 8th-order linear differential equation (4.29), whose inverse operator should
be expressed by (4.30). However, when λ=ω1 and δ=ω2

κ−ω2
1, although its kernel de-

fined by (3.2) is a vector space of 4, 6, 8 dimension for κ= 2,3,4, respectively, its inverse
operator defined by (3.1) always looks like that of a second-order linear operator whose
kernel should be a vector space of 2 dimension according to the traditional mathematical
theorms! Obviously, the inverse operator (3.1), which we directly define in the frame of
the HAM, is quite different from (4.18), (4.24) and (4.30). Not that we even do not know
how to explicitly express its corresponding auxiliary linear operator L. Fortunately, it is
unnecessary to know the undetermined linear operator L in the frame of the HAM. Thus,
to the best of author’s knowledge, the auxiliary linear operator defined by (3.1) and (3.2)
is fundamentally different from all known traditional linear operators. Note that, in the
previous applications of the HAM [14–26,28–42], one mostly chooses a proper linear aux-
iliary operator L and then find its corresponding inverse operator L−1 so as to solve the
high-order equations. However, in this paper, we directly define the inverse operator L−1

but do not care about the explicit expression of the corresponding auxiliary linear opera-
tor L at all. This might be a breakthrough in the field of differential equations. It further
illustrates the novelty and great potential of the so-called “method of directly defining
inverse mapping” (MDDiM), which was proposed by Liao and Zhao [43] in the frame
of the HAM and has been successfully applied to solve many types of nonlinear equa-
tions [44–56].

Thirdly, unlike perturbation techniques, the HAM provides us great freedom to
choose initial guesses. Using such kind of freedom, we can gain the multiple limit-cycles
of the forced Duffing equation (1.1) by means of the HAM. Note that, when λ=ω1 and
δ=ω2

κ−ω2
1 for κ≥2, the larger the value of δ in the definitions (3.1) and (3.2), the greater

the probability to find more limit-cycles of the forced Duffing equation (1.1). In contrast,
perturbation method provides only one initial guess (1.8) and thus at most one limit-
cycle. Thus, this illustrates the novelty of our HAM approach and its advantages beyond
perturbation.

Unlike all other approximation techniques (including perturbation methods), the
HAM contains the so-called convergence-control parameter c0, which provides a simple
way to guarantee the convergence of solution series even when the nonlinearity is very
high, as illustrated in this paper and also in other publications about the HAM [28–42].
This guarantees that the HAM-based approach is generally valid for high nonlinearity.

As pointed out by Giorgilli [9], Duffing equation “is perhaps the simplest example
of a non-integrable system exhibiting all problems due to the small denominators”. So,
although the forced Duffing equation (1.1) is used here as an example to illustrate the
validity and novelty of the HAM approach and its advantages beyond perturbation, most
conclusions mentioned above have general meanings.

What will happen if the homotopy analysis method (HAM) instead of perturbation
method is first proposed by an intelligent being on a planet in the universe? Certainly,
using the HAM-based approach mentioned in this paper, this kind of intelligent being
should have no ideas of “small denominator problem” at all! Thus, the famous “small
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denominator problem” does not really exist and should be an artifact of perturbation
method. Therefore, completely abandoning perturbation methods but using the HAM-
based MDDiM, we can thoroughly avoid “small denominator problems” and besides
could attack many open problems related to small denominators. In addition, we illus-
trated here that a nonlinear differential equation can be solved by directly defining a
proper inverse operator of an undetermined linear operator. Hopefully, this fact might
lead to a breakthrough in the field of differential equations.

In summary, completely abandoning perturbation methods but using the HAM-
based MDDiM, one would be never troubled by “small denominator problems”!
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