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Abstract. Gas distribution function plays a crucial role in the description of gas flows
at the mesoscopic scale. In the presence of non-equilibrium flow, the distribution func-
tion loses its rotational symmetricity, making the mathematical derivation difficult.
From both the Chapman-Enskog expansion and the Hermite polynomial expansion
(Grad’s method), we observe that the non-equilibrium effect is closely related to the
peculiar velocity space (C). Based on this recognition, we propose a new methodology
to construct the non-equilibrium distribution function from the perspective of polyno-
mial expansion in the peculiar velocity space of molecules. The coefficients involved in
the non-equilibrium distribution function can be exactly determined by the compati-
bility conditions and the moment relationships. This new framework allows construct-
ing non-equilibrium distribution functions at any order of truncation, and the ones at
the third and the fourth order have been presented in this paper for illustration pur-
poses. Numerical validations demonstrate that the new method is more accurate than
the Grad’s method at the same truncation error for describing non-equilibrium effects.
Two-dimensional benchmark tests are performed to shed light on the applicability of
the new method to practical engineering problems.

AMS subject classifications: 76P05
Key words: Non-equilibrium gas distribution function, peculiar velocity space, complete poly-
nomial expansion.

1 Introduction

The gas distribution function is a probability function to describe the molecular behav-
iors in the phase velocity space. It plays essential roles in modeling gas flows from the
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mesoscopic perspective in a way that the moments of the gas distribution function re-
cover macroscopic flow variables such as density, velocity and temperature. In equilib-
rium state, the gas distribution function can be exactly derived as the Maxwellian dis-
tribution [1]. This distribution function is unimodal with Gaussian-like forms and pos-
sesses rotational symmetricity in the phase velocity space [2]. However, in the presence
of non-equilibrium flows (e.g., the shock wave structure [3–5], asymmetric features such
as bimodal forms arise in the distribution function, which increment the difficulties in
constructing mathematical models.

Existing methods to approximate the distribution function for non-equilibrium flows
stem from two ideas: the Chapman-Enskog (CE) expansion [6] and the Hermite poly-
nomial expansion [7]. Specifically, the CE expansion performs power series expansion
on the equilibrium distribution function [8–10]. With more expansion terms, the con-
structed distribution function is expected to more precisely describe the deviation from
equilibrium state. However, since it is expanded with respect to a term proportional
to the Knudsen number [11], this approach naturally fails in recovering strong non-
equilibrium behaviors. To alleviate these limitations, Grad [12] approximated the non-
equilibrium distribution function in terms of Hermite polynomial expansion. Among
various versions of Grad’s models, the Grad’s 13 distribution function [12] truncating at
the third-order Hermite polynomial expansion is perhaps the most classical one, whose
capability is mainly recognized in the slip regime and the transition regime at moder-
ate Knudsen number [13]. Stronger non-equilibrium behaviors can be recovered by us-
ing the fourth-order Hermite polynomial expansion, which results in Grad’s 26 distri-
bution function [14]. However, the Grad’s distribution function is derived from the or-
thogonal Hermite polynomial expansion. As a result, it merely considers the contracted
coefficients and contracted polynomials, which strictly satisfy orthogonality. The non-
orthogonal terms are never considered and will lose some physical information to some
extent.

Hence, it is still desirable to propose an effective distribution function, which could
be more capable for the prediction of its shape in the non-equilibrium flows than the
one derived from the CE expansion or Hermite polynomial expansion. Existing works
show that the non-equilibrium distribution functions derived from CE expansion and
Hermite polynomial expansion can be both formulated as an equilibrium distribution
function multiplying a revision term φ. For the CE expansion method, the term φCE is
associated with the gradients of thermodynamic variables and the peculiar velocities [15].
In the meantime, for the Grad’s distribution function, the revision term φGrad is mainly
made of the high-order moments and the peculiar velocities. Both perspectives imply
that the non-equilibrium effect could be closely associated with the peculiar velocities,
which leads to a natural question of whether the direct expansion in the peculiar velocity
space could construct more accurate non-equilibrium terms. The answer towards this
question motivates the present paper.

In this paper, we propose a generalized methodology to construct non-equilibrium
gas distribution functions based on the complete polynomial expansion in the peculiar
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velocity space C=[C1,C2,C3]. The coefficients involved in the expansion are determined
by the compatibility conditions and the moment relationships. Mathematically, this ex-
pansion can be carried out to infinite orders of C. In the present work, the constructed
gas distribution function is truncated at the third and the fourth orders to illustrate the
expansion process. At the same time, the third-order and the fourth-order truncations
provide intuitive comparisons with Grad’s 13 distribution function and Grad’s 26 dis-
tribution function, which are truncated at the third and the fourth orders of Hermite
polynomial expansion, respectively. Validations show that the new construction strategy
outperforms the Grad’s method at the same order of truncation in terms of describing
non-equilibrium behaviors. Furthermore, distribution functions truncated at even higher
order can be routinely constructed using the new method as per needs in the future stud-
ies.

2 The existing Maxwellian, Navier-Stokes and Grad’s
distribution functions

For the equilibrium flow, the distribution function of gas molecules follows the
Maxwellian distribution [16]. More specifically, for monatomic gas, the distribution func-
tion reads

g=ρ/(2πRT)3/2 ·e−C2/2RT, (2.1)

here, ρ is the macroscopic density, T denotes the macroscopic temperature. R is the gas
constant. C = [C1,C2,C3] is the peculiar velocity vector, in which C1, C2 and C3 are the
components in the x-, y- and z-directions. In quasi-equilibrium flow regime, the distri-
bution function can be derived by the CE expansion method. The first-order CE expan-
sion [15,17] leads to the following distribution function that recovers Navier-Stokes (NS)
flows

f NS = gφNS = g
[

1+
CiCj

2pRT

(
−2µ

∂U<i

∂xj>

)
+

Ci

pRT

(
C2

5RT
−1
)
·
(
−λ

∂T
∂xi

)]
, (2.2)

where p is the pressure; −2µ·∂U<i/∂xj> and −λ·∂T/∂xi are equivalent to the linearized
stress tensor and heat flux, respectively. Different from the NS distribution function,
the Grad’s 13 distribution function is established from the third-order truncated Hermite
polynomial expansion [12], which gives

f G13= gφG13= g
[

1+
σij

2pRT
CiCj+

qiCi

pRT

(
C2

5RT
−1
)]

, (2.3)

where σij denotes the stress tensor and qi means the heat flux. Comparing the above
equation with the form of NS distribution function shown in Eq. (2.2), we can see that
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the heat flux and stress tensor in the Grad’s distribution function are not explicitly given.
They are determined by the moments of distribution function [18–20] as follows

σij =

〈(
CiCj−

1
3

δijCkCk

)
f
〉

, qi =

〈
1
2

CiC2 f
〉

, (2.4)

where 〈···〉means the integration over the whole velocity space and is calculated by,

〈···〉=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(···)dξ1dξ2dξ3. (2.5)

3 Non-equilibrium gas distribution function constructed by
complete expansion in the peculiar velocity space

By comparing Eq. (2.2) and Eq. (2.3), we can see that the non-equilibrium distribution
function can be expressed in a general format of an equilibrium distribution function
multiplying a non-equilibrium term,

f = gφ, (3.1)

where φ represents the non-equilibrium effect. For the NS distribution function in
Eq. (2.2), the φNS mainly consists of gradients of thermodynamic variables and the pecu-
liar velocities. The φG13 in the Grad’s 13 distribution function shown in Eq. (2.3), mainly
consists of the high-order moments and the peculiar velocities. Hence, the peculiar ve-
locities are essential elements in the construction of non-equilibrium term from both CE
expansion and the Hermite polynomial expansion perspectives. A direct way of mathe-
matically interpreting this vision is to construct the non-equilibrium factor φ through a
complete expansion in the peculiar velocity space, given as,

φ=∑amnlCm
1 Cn

2 Cl
3, (3.2)

where amnl is the coefficient for the corresponding term. m, n and l stand for the power
of each peculiar velocity component. Then, the format of non-equilibrium distribution
function shown in Eq. (3.1) can be reformulated as,

f = g·∑amnlCm
1 Cn

2 Cl
3, (3.3)

Eq. (3.3) represents a general expression of this new exploration, in which all coefficients
amnl should be properly derived. Here, we employ the compatibility conditions and the
moment relationships which have been proven to be robust for various kinds of flows, no
matter whether the flow is in the equilibrium state or in the non-equilibrium state. The
compatibility conditions yield

〈 f 〉= 〈g〉=ρ, 〈 f ξi〉= 〈gξi〉=ρUi,
〈

f · 1
2

ξ2
i

〉
=

〈
g· 1

2
ξ2

i

〉
=ρE, (3.4)
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where E=1/2·ρU2+3ρRT/2 is the energy. The moment relationships give〈
Cm

1 Cn
2 Cl

3 f
〉
=
〈

g·∑amnlCm
1 Cn

2 Cl
3

〉
. (3.5)

It is noteworthy that the more expansions conducted, the more equations of the moment
relationships can be obtained. Although the expansion in the peculiar velocity can be
made to infinite orders, it is unreal to solve a system containing infinite equations. A
practical method is to truncate the expansion terms at certain order. In this paper, the
expansion in the peculiar velocity will be truncated at the third-order and the fourth-
order for illustration.

4 Distribution function derived from the third-order
truncation

The truncation of φ at the third-order means that m+n+l≤3 and m,n,l∈N. Taking the
one-dimensional case as an example, the terms containing odd powers of C2 or C3 vanish,
and thus the non-equilibrium term can be expanded as,

φ3rd = a000+a100C1+a200C2
1+a020C2

2+a002C2
3+a300C3

1+a120C1C2
2+a102C1C2

3 . (4.1)

The above expression involves eight unknown coefficients. The compatibility conditions
in Eq. (3.4) give the following relations for the 1-D case

〈 f 〉= 〈g〉=ρ, 〈 f ξ1〉= 〈gξ1〉=ρU1,
〈

f · 1
2

ξ2
i

〉
=

〈
g· 1

2
ξ2

i

〉
=ρE. (4.2)

By substituting ξi=Ui+Ci into Eq. (4.2), the compatibility conditions can be reformulated
as

〈 f 〉=ρ, 〈 f C1〉=0,
〈

f ·C2〉=3ρRT. (4.3)

Substituting f = gφ3rd into Eq. (4.3) gives

a000=1, a200+a020+a002=0, a100+(3a300+a120+a102)·(RT)=0. (4.4)

Then, considering the different orders in the moment relationships in Eq. (3.5), we can
derive the following relations〈

C2
1 f
〉
=ρRT(a000+3RTa200+RTa020+RTa002), (4.5a)〈

C2
2 f
〉
=ρRT(a000+RTa200+3RTa020+RTa002), (4.5b)〈

C2
3 f
〉
=ρRT(a000+RTa200+RTa020+3RTa002), (4.5c)〈

C3
1 f
〉
=3ρ(RT)2 [a100+RT(5a300+a120+a102)], (4.5d)〈

C1C2
2 f
〉
=ρ(RT)2 [a100+RT(3a300+3a120+a102)], (4.5e)〈

C1C2
3 f
〉
=ρ(RT)2 [a100+RT(3a300+a120+3a102)]. (4.5f)
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Finally, combining the compatibility conditions shown in Eq. (4.4) and the moment rela-
tionships in Eqs. (4.5a)-(4.5f), the coefficients in Eq. (4.1) can be determined as

a000=1, a100=−
〈
C1C2 f

〉
2ρ(RT)2 , (4.6a)

a200=

〈
C2

1 f
〉

2ρ(RT)2−
1

2RT
, a020=

〈
C2

2 f
〉

2ρ(RT)2−
1

2RT
, a002=

〈
C2

3 f
〉

2ρ(RT)2−
1

2RT
, (4.6b)

a300=

〈
C3

1 f
〉

6ρ(RT)3 , a120=

〈
C1C2

2 f
〉

2ρ(RT)3 , a102=

〈
C1C2

3 f
〉

2ρ(RT)3 . (4.6c)

Now we validate the accuracy of the new distribution function by comparing it with the
Grad’s 13 distribution function. A benchmark non-equilibrium distribution function is
produced by combining two equilibrium distribution function at different states, which
gives

f neq =ρ1/(2πRT1)
3/2 ·e−C2/2RT1+ρ2/(2πRT2)

3/2 ·e−C2/2RT2 . (4.7)

To generalize, the density, velocity and temperature involved in the Maxwellian distri-
bution function are normalized as,

ρ̂=
ρ

ρ∞
, Û=

U
U∞

, T̂=
T

T∞
, (4.8)

where ρ∞=1kg/m3 is the reference density, T∞=273K is the reference temperature, and
U∞=

√
2RT∞=337m/s is the reference velocity. R is equal to 208J/kgK for argon gas.

Since the Mach number is defined as Ma =U/
√

γRT∞, the dimensionless velocity can
be written as Û=Ma

√
γ/2, where the specific heat ratio γ is equal to 5/3 for argon gas.

Here we fix the parameters ρ̂1=1, Ma1 =0, T̂1 =1 and consider three different cases: (a)
ρ̂2=2, Ma2=1.5, T̂2=1, (b) ρ̂2=2, Ma2=2, T̂2=1, (c) ρ̂2=2, Ma2=2.5, T̂2=1. For each case,
the non-equilibrium distribution function can be calculated from Eq. (4.7) using specified
macroscopic variables. The stress tensor and heat flux are then evaluated from Eq. (2.4),
with which the Grad’s 13 distribution function gives the approximated non-equilibrium
state. In the meantime, the coefficients in Eqs. (4.6a)-(4.6c) can also be calculated, based
on which the new distribution function would be obtained. Comparisons of these results
are shown in Fig. 1. It turns out that the new distribution function is more accurate than
the Grad’s 13 distribution function.

Now we level up the problem to a more practical two-dimensional condition. More
expansion terms, including a010C2, a110C1C2, a030C3

2 , a210C2C2
1 , a012C2C2

3 , emerge. The
compatibility conditions and moment relationships are still used to determine the co-
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Figure 1: The comparison of the curve shape of distribution functions.

efficients. Their expressions are listed as

a010=−
〈
C2C2 f

〉
2ρ(RT)2 , a110=

〈C1C2 f 〉
ρ(RT)2 , (4.9a)

a030=

〈
C3

2 f
〉

6ρ(RT)3 , a210=

〈
C2

1C2 f
〉

2ρ(RT)3 , a012=

〈
C2C2

3 f
〉

2ρ(RT)3 . (4.9b)

Numerical tests have been carried out on a recently developed platform called ”novel
solver” [21–23]. The key issue for this platform is how to accurately construct distribution
function at the cell interface. In the conventional ”novel solver”, the distribution function
is obtained by a combination of Grad’s 13 distribution function and equilibrium distribu-
tion with a weight factor. Thus, on this platform, one just needs to replace the Gard’s 13
distribution function with the newly derived distribution function to retrieve the results
and make comparisons. The problem configuration here is the flow arising from bottom
heated transfer [24] at Knudsen number Kn=0.05, 0.13 and 0.3. This Kn is equivalent to a
typical non-equilibrium condition for vehicles (with the characteristic length equal to 1m)
at the altitude of 94.2km, 99.5km and 104.5km. The reference viscosity µ∞ is calculated
by Kn·L·ρ∞

√
RT∞, where L is the characteristic length, ρ∞ is the reference density and

T∞ is the reference temperature. In the simulation progress, the Gauss–Hermite quadra-
ture with 28×28 mesh points is utilized for the approximation of numerical integration.
As illustrated in Fig. 2, the streamlines predicted by the new distribution function match
better with those of discrete velocity method (DVM) [25] than the Grad’s 13 [21] distri-
bution function for Kn=0.05. The quantitative comparison of temperature profiles along
the central line is plotted in Fig. 3. The results obtained by the new distribution function
are also in better agreement with the reference data than those obtained by the Grad’s
13 distribution function. A validation of the grid independence for the present solver is
conducted by using four sets of mesh scale, including 20×20, 40×40, 60×60 and 80×80.
As illustrated in Fig. 4, the results obtained by the mesh scale of 60×60 could converge to
the results by 80×80. Thus, 60×60 is fine enough to ensure the simulation accuracy. Fig. 5
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Figure 2: The comparison of streamlines for Kn=0.05.
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Figure 3: The comparison of temperature profiles along horizontal central line (a) and vertical central line (b)
for Kn=0.05.

shows the comparison of streamline for Kn=0.13. Reasonable agreements have been ob-
tained between DVM and the present solver. The temperature profiles along horizontal
central line and vertical central line are shown in Fig. 6. It can be seen that the results
of the present solver match well with those of DVM, but the results based on the Grad’s
13 distribution function over-predict the temperature. As displayed in Fig. 7, the flow
pattern given by new distribution function is still in better agreement with DVM than
the Grad’s 13 distribution function. Fig. 8 shows that temperature profiles obtained by
the present distribution function are also closer to those given by DVM than the Grad’s
13 distribution function.
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Figure 4: The comparison of temperature profiles along horizontal central line (a) and vertical central line (b)
with different mesh scales.
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Figure 5: The comparison of streamlines for Kn=0.13.

5 Distribution function derived from the fourth-order
truncation

In this section, the expanded distribution function will be truncated at the fourth-order
to strengthen its capability of simulating non-equilibrium flows. Compared with the
derivations in the previous section, more terms that satisfy the condition of m+n+l=4
should be considered, which gives the following non-equilibrium term φ4th

φ4th =φ3rd+ ∑
m+n+l=4

amnlCm
1 Cn

2 Cl
3. (5.1)
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Figure 6: The comparison of temperature profiles along horizontal central line (a) and vertical central line (b)
for Kn=0.13.
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Figure 7: The comparison of streamlines for Kn=0.3.

For simplicity, this process is implemented on the one-dimensional case first, and the
term

∑
m+n+l=4

amnlCm
1 Cn

2 Cl
3

can be explicitly written as

∑
m+n+l=4

amnlCm
1 Cn

2 Cl
3= a400C4

1+a040C4
2+a004C4

3+a220C2
1C2

2+a202C2
1C2

3+a022C2
2C2

3 . (5.2)

Based on the compatibility conditions in Eq. (3.4) and the moment relationships in
Eq. (3.5), the coefficients involved in φ4th can be derived. It should be noted that some
coefficients, including a100, a300, a111, a120, a102, share the same expressions as shown in
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Figure 8: The comparison of temperature profiles along horizontal central line (a) and vertical central line (b)
for Kn=0.3.

Eqs. (4.6a)-(4.6c). Other coefficients are derived as

a000=1+∆000, (5.3a)

a200=
〈C1C1 f 〉
2ρ(RT)2−

1
2RT
−∆200, a020=

〈C2C2 f 〉
2ρ(RT)2−

1
2RT
−∆020,

a002=
〈C3C3 f 〉
2ρ(RT)2−

1
2RT
−∆002, (5.3b)

where

∆000=(3(a400+a040+a004)+(a220+a202+a022))(RT)2, (5.4a)
∆200=(6a400+a220+a202)RT, ∆020=(6a040+a220+a022)RT,
∆002=(6a004+a202+a022)RT, (5.4b)

a400=

〈
f C4

1

〉
−6(RT)

〈
C2

1 f
〉

24ρ(RT)4 +
1

8(RT)2 , (5.4c)

a040=

〈
f C4

2
〉
−6(RT)

〈
C2

2 f
〉

24ρ(RT)4 +
1

8(RT)2 , (5.4d)

a004=

〈
f C4

3
〉
−6(RT)

〈
C2

3 f
〉

24ρ(RT)4 +
1

8(RT)2 , (5.4e)

a220=

〈
C2

1C2
2 f
〉
−(RT)

〈
C2

1 f
〉
−(RT)

〈
C2

2 f
〉

4ρ(RT)4 +
1

4(RT)2 , (5.4f)
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a202=

〈
C2

1C2
3 f
〉
−(RT)

〈
C2

1 f
〉
−(RT)

〈
C2

3 f
〉

4ρ(RT)4 +
1

4(RT)2 , (5.4g)

a022=

〈
C2

2C2
3 f
〉
−(RT)

〈
C2

2 f
〉
−(RT)

〈
C2

3 f
〉

4ρ(RT)4 +
1

4(RT)2 . (5.4h)

To validate the accuracy of the fourth-order truncated distribution function, we adopt
the distribution functions shown in Eq. (4.7) again and construct three non-equilibrium
distribution functions with the settings of ρ̂1=1, Ma1=0, T̂1=1 and (a) ρ̂2=1, Ma2=1.5,
T̂2=1, (b) ρ̂2=1, Ma2=2, T̂2=1, (c) ρ̂2=1, Ma2=2.5, T̂2=1. The implementation is the same
as the validation case in Section 4. Comparisons of the recovered distribution functions
are shown in Fig. 9. The simulated cases possess quite strong non-equilibrium effects,
due to which the results obtained by the third-order truncated distribution function are
not satisfactory: in Fig. 9(a), it overestimates the peak value; in Fig. 9(b), it fails to predict
the Bimodal effect; in Fig. 9(c), it underestimates the peak values. In comparison, given
its enhanced capability of describing non-equilibrium effect, the fourth-order truncated
distribution function agrees well with the reference data. Considering that the Grad’s
26 distribution function is also truncated at the fourth-order (of Hermite polynomial),
its results are also presented in the plots for comparison. In all cases, the results of the
Grad’s 26 distribution function are less accurate than the present fourth order truncated
distribution function, which demonstrates the superiority of the proposed method in
constructing distribution functions that can better cope with the non-equilibrium effects.

Now we generalize the fourth-order truncated distribution function to the two-
dimensional case by considering more expansion terms, including a130C1C3

2 , a310C2C3
1

and a112C1C2C2
3 . The coefficients for these terms are still derived from the capability con-

ditions and moment relationships. Their final expressions are given as

a310=

〈
C3

1C1
2 f
〉
−3(RT)〈C1C2 f 〉
6ρ(RT)4 , (5.5a)

a130=

〈
C1

1C3
2 f
〉
−3(RT)〈C1C2 f 〉
6ρ(RT)4 , (5.5b)

a112=

〈
C1

1C1
2C2

3 f
〉
−(RT)〈C1C2 f 〉

2ρ(RT)4 , (5.5c)

For validation, the simulation of continuum flows in a lid-driven cavity flow at Reynolds
number of Re= 100, 400 and 1000 are conducted. The computational domain is divided
uniformly into 60×60, 80×80 and 100×100 cells with the increase of Reynolds number.
The particle velocity space is discretized by 8×8 quadrature points by Gauss–Hermite
rule. As shown in Figs. 10, 11 and 12, the results of the third and fourth order truncated
distribution function agree well with those of Ghia et al. [26]. These test cases prove that
the present distribution functions can recover solutions of NS equations in the continuum
regime and give the same accurate results.
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Figure 9: The comparison of non-equilibrium distribution function profiles.
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Figure 10: The comparison of U-velocity (a) and V-velocity (b) profiles along central lines for Re=100.

For further validation, we consider a lid-driven cavity flow at Kn= 0.1, which rep-
resents a typical non-equilibrium condition for vehicles (with the characteristic length
equal to 1m) at the altitude of 98km. The reference viscosity is obtained in the same way
as the case of bottom heated transfer flow. For the numerical integration, Gauss-Hermite
quadrature with 8×8 mesh points is utilized again. The simulation results are shown in
Fig. 13 and compared with the reference results given by the DVM. All of the gas distri-
bution functions predict the anti-Fourier heat transfer phenomenon. As demonstrated in
the left plot of Fig. 14, compared with the reference data calculated by DVM, the fourth-
order distribution function exhibits higher accuracy in predicting temperature profiles
than the other distribution functions. The right plot of Fig. 14 displays the comparison
of convergence history between different distribution functions. It is obvious to find that
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Figure 11: The comparison of U-velocity (a) and V-velocity (b) profiles along central lines for Re=400.
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Figure 12: The comparison of U-velocity (a) and V-velocity (b) profiles along central lines for Re=1000.

the convergence rate of present schemes are much faster than that of DVM.
These results validate the capability of the proposed methodology in constructing

proper distribution functions for a real non-equilibrium flow problem. Higher order of
truncation contributes to the accuracy in predicting stronger non-equilibrium effects, al-
though it is accompanied by more expansion terms. In practice, the truncation order
should be determined by the expected non-equilibrium in the investigated problem. For
many commonly encountered non-equilibrium flows, the Knudsen number is normally
less than 0.1. In such scenario, the present fourth order truncated distribution func-
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Figure 13: The comparison of temperature contours and heat flux lines for Kn=0.1.

tion can give satisfactory simulation results and possess better accuracy than the Grad’s
method truncated at the same order.

6 Conclusions

In this paper, we propose a methodology to construct the non-equilibrium distribution
function from a new perspective of polynomial expansion in the peculiar velocity space.
The free parameters in the non-equilibrium distribution function can be exactly derived
from the compatibility conditions and the moment relationships. The third-order and
the fourth-order truncated distribution functions are compared with the Grad’s 13 and
26 distribution functions, respectively. The validations of one-dimensional results show
that the present method is more accurate than the Grad’s method at the same truncation
order. Tests of two-dimensional problems are also carried out to forge its prospect in
practical applications. Finally, it should be reaffirmed that the proposed methodology
can be employed to construct distribution function truncated at higher orders, which
would be subject to the strength of non-equilibrium in the investigated problem.
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