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Abstract. In this paper, a node-based smoothed finite element method (NS-FEM) with
linear gradient fields (NS-FEM-L) is presented to solve elastic wave scattering by a
rigid obstacle. By using Helmholtz decomposition, the problem is transformed into a
boundary value problem with coupled boundary conditions. In numerical analysis,
the perfectly matched layer (PML) and transparent boundary condition (TBC) are in-
troduced to truncate the unbounded domain. Then, a linear gradient is constructed
in a node-based smoothing domain (N-SD) by using a complete order of polynomial.
The unknown coefficients of the smoothed linear gradient function can be solved by
three linearly independent weight functions. Further, based on the weakened weak
formulation, a system of linear equation with the smoothed gradient is established for
NS-FEM-L with PML or TBC. Some numerical examples also demonstrate that the pre-
sented method possesses more stability and high accuracy. It turns out that the modi-
fied gradient makes the NS-FEM-L-PML and NS-FEM-L-TBC possess an ideal stiffness
matrix, which effectively overcomes the instability of original NS-FEM. Moreover, the
convergence rates of L2 and H1 semi-norm errors for the two NS-FEM-L models are
also higher.

AMS subject classifications: 35L05, 65N99

Key words: Elastic obstacle scattering, Helmholtz equations, perfectly matched layer, transparent
boundary condition, NS-FEM with linear gradient.

∗Corresponding author.
Email: yuejunhong@tyut.edu.cn (J. Yue)

http://www.global-sci.org/aamm 1562 c©2023 Global Science Press



Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601 1563

1 Introduction

The obstacle scattering [1] has been widely used in medicine, location detection and other
fields. It can be divided into acoustic, electromagnetic and elastic scattering. These prob-
lems have been widely studied in theoretical [2–4] and numerical [5, 6] aspects.

A fundamental difficulty in the obstacle scattering is that the problem domain is open.
Hence some techniques need to be applied to make the problem domain truncated. At
present, there are many techniques have been studied, among which the common ones
include perfectly matched layer (PML) [7], transparent boundary condition (TBC) [3].
The PML refers to the method of applying a layer with a special absorption medium
layer to a certain domain around the obstacle, so that the wave can be fully absorbed
upon reaching the outer boundary of PML. Many researchers have proved that PML is
a valid method and is widely used in solving acoustic wave [8–11], elastic wave [12–16]
and electromagnetic wave scattering [4,7]. The TBC is also a common technique, which is
constructed using the analytic solutions with an infinite Fourier series. By imposing the
TBC on the boundary of the truncated domain, the reflection of the wave can be avoided.
The TBC has been used for solving many wave scattering problems [17–24].

Both compressional wave and shear wave exist in the scattering of elastic waves,
which makes the study of elastic waves more complicated and it is not easy to obtain
analytical solutions for arbitrarily shaped obstacles. Currently, many discrete numer-
ical methods are proposed for solving these problems, such as the boundary integral
method [1], finite element method (FEM) [25, 26], smoothed point interpolation method
(S-PIM) [27], and smoothed finite element method (S-FEM) [28]. Since PML and TBC
are artificial boundary conditions in nature, there will be certain errors when they are
applied. Usually, due to the over-stiff property of FEM, the solution accuracy of FEM
model with the TBC or PML is not very high for solving this problem. In order to make
up for this deficiency of FEM, Liu et al. proposed the G space theory based on weak-
ened weak (W2) formulations and constructed S-FEM models [29,30]. Besides, according
to different type of smoothing domains, the S-FEM can be divided into the cell-based S-
FEM (CS-FEM), the node-based S-FEM (NS-FEM), the edge-based S-FEM (ES-FEM) in 2D
problem. These models can obtain high precision solutions for different problems, such
as solid mechanics problems [31–33], thermal problems [34] and so on. Recently, Yue and
Wu proposed ES-FEM model with PML technique [5] and TBC technique [35] for solving
elastic wave obstacle scattering, respectively. The NS-FEM has been proved to have many
properties for solid mechanics, such as, spatial discrete stability, time response stability
and possessing near-accurate stiffness and so on [36,37]. But we noticed that the original
NS-FEM cannot be extended to wave scattering problems due to the ”over-soft” stiffness
of the method. Chai first presented a stable NS-FEM (SNS-FEM) for the analysis of acous-
tic scattering to cure the instability of original NS-FEM [23], and Wang solved the elastic
wave obstacle scattering problem by using SNS-FEM and PML technique [38]. In addi-
tion, Liu proposed a novel pick-out technique for constructing higher order smoothed
derivatives [39]. Li and Liu also extended this technique to NS-FEM (NS-FEM-L), which



1564 Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601

have been employed to solve the static, free and force vibration analyses of solid [40],
and contact problems [41]. Therefore, we expect that the NS-FEM-L can also be used for
improving the accuracy of FEM solutions and the instability of original NS-FEM.

In this paper, the NS-FEM-L models combine PML and TBC techniques for solving
the elastic wave obstacle scattering. The scattering model, PML and TBC truncation
techniques are given in next section. In Section 3, the NS-FEM is introduced and the
linear gradient field is constructed on the node-based SD using the three linearly inde-
pendent weight functions, which further forms the modified smoothed gradient matrix.
Section 4 derives the formulations of NS-FEM-L with PML and TBC by using the modi-
fied smoothed gradient matrix in detail. Different numerical examples are carried out to
study the convergence and stability of the proposed method in Section 5. Some conclu-
sions are made in Section 6.

2 Basic equations for elastic scattering problem by an obstacle

Consider a time-harmonic plane elastic wave scattering problem by a rigid obstacle D,
where the obstacle boundary is ΓD. The scattering problem domain outside the obstacle
is denoted by Ω=R2\D, as shown in Fig. 1. For the plane elastic wave obstacle scattering,
the total field u=(u1,u2) satisfies the following Navier equation

µ∆u+(λ+µ)∇∇·u+ω2u=0 in Ω, (2.1)

where λ and µ are the Lame constants satisfying µ>0 and λ+µ>0 ; ω>0 is the angular
frequency. It is well known that the total field is the superposition of incident and scat-
tered field, i.e., u= uinc+v, and an incident plane elastic wave also satisfies the Navier
equation, so we can get the scattered field v=(v1,v2) satisfies

µ∆v+(λ+µ)∇∇·v+ω2v=0 in Ω. (2.2)

Since the obstacle is rigid, the obstacle boundary condition for scattered field is

v=−uinc on ΓD. (2.3)

In addition, the scattered field v is required to satisfy the Kupradze Sommerfeld radiation
condition

lim
ρ→∞

ρ
1
2 (∂ρvp−iκpvp)=0, lim

ρ→∞
ρ

1
2 (∂ρvs−iκsvs)=0, ρ= |x|, (2.4)

where vp :=−κ−2
p ∇∇·v, vs :=κ−2

s curlcurlv are the compressional part and the shear part,
respectively, and κp =ω/

√
λ+2µ, κs =ω/

√
µ, curlv=∂xv2−∂yv1, curlψ=[∂yψ−∂xψ]T.

For any solution v of Eq. (2.2), it is decomposed into the compressional and shear
parts by using the Helmholtz decomposition:

v=∇φ+curlψ, (2.5)
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Figure 1: The problem geometry of elastic scattering by an arbitrary obstacle.

where φ and ψ are scalar potentials, which are called Lame potential. Substituting Eq. (2.5)
into Eq. (2.2) gives

∇
(
(λ+2µ))∆φ+ω2φ

)
+curl

(
µ∆ψ+ω2ψ

)
=0,

which is fulfilled if φ and ψ satisfy the Helmholtz equations

∆φ+κ2
pφ=0, ∆ψ+κ2

s ψ=0 in Ω, (2.6)

where κp and κs are the compressional and shear wavenumbers, respectively. The bound-
ary condition by using Helmholtz decomposition (2.5) becomes

∂νφ+∂τψ= f , ∂νψ−∂τφ= g on ΓD, (2.7)

where f =−ν·uinc, g=τ ·uinc. ν=(ν1,ν2)T and τ=(τ1,τ2)T denote unit normal and tan-
gential vectors on ΓD, and satisfy τ1=−ν2, τ2=ν1, as shown in Fig. 1.

The potentials need to satisfy the Sommerfeld radiation condition to ensure the unique-
ness of scattered field

lim
ρ→∞

ρ
1
2 (∂ρφ−iκpφ)=0, lim

ρ→∞
ρ

1
2 (∂ρψ−iκsψ)=0, ρ= |x|. (2.8)

Once the potentials are found through the governing equation (2.6) and boundary con-
ditions (2.7)-(2.8), the solutions of Navier equation can be calculated using the following
relation

v=[v1 v2]
T=[∂xφ+∂yψ ∂yφ−∂xψ]T. (2.9)

From the wellposed of problem (2.2)-(2.4) and (2.6)-(2.8), we can obtain the unique-
ness of the Helmholtz decomposition. The result is stated in the following Remark and
the brief illustration is given in Appendix.
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Remark 2.1. Let v be the scattered field corresponding to the solution of the bound-
ary value problem (2.2)-(2.4). Then the scattered field v can be decomposed using the
Helmholtz decomposition v=∇φ+curlψ, where φ=−κ−2

p ∇·v, ψ= κ−2
s curlv are the so-

lutions of the coupled boundary value problem (2.6)-(2.8), and the Helmholtz decompo-
sition is unique.

However, since the obstacle scattering problem is an open domain problem, we need
to introduce some techniques to truncate the problem domain for numerical calculation.
In this paper, the well-known PML technique and TBC technique are used and given in
the following subsection.

2.1 The reduced problem with PML

The PML technique is introduced for the scattering problem in this subsection. Fig. 2
shows a scattering domain with a square PML, where the bounded domain is denoted
by ΩPML and its boundary is ∂ΩPML =ΓD

⋃
Γp. The domain ΩPML can be described by

ΩPML =
{
(x,y)|xmin−dx < x< xmax+dx, ymin−dy <y<ymax+dy

}
\D, (2.10)

where dk, (k= x,y) is the thickness of PML layer in k direction. Let sk(k)=σ0(k)+iσk(k),
k= x,y be the model medium property of PML in the domain ΩPML, and satisfies{

σ0=1, σk =0, for xmin< x< xmax or ymin<y<ymax,
σ0=1, σk >0, otherwise,

(2.11)

where i=
√
(−1) is an imaginary unit.

The PML is defined by the complex coordinate stretching

x̂=
∫ x

0
sx(τ)dτ, ŷ=

∫ y

0
sy(τ)dτ. (2.12)

The form of the governing equation satisfied by the potentials in the complex coordinate
system (x̂, ŷ) is the same as that of the original governing equation (2.6), which has been
given in [44], i.e.,

∆x̂φ+κ2
pφ=0, ∆x̂ψ+κ2

s ψ=0 in ΩPML, (2.13)

where ∆x̂=∂2
x̂x̂+∂2

ŷŷ. According to Eq. (2.12) and chain rule, we have following relations

∂

∂x̂
=

1
sx(x)

∂

∂x
,

∂

∂ŷ
=

1
sy(y)

∂

∂y
. (2.14)

Based on the above transformation, the Eq. (2.13) becomes

∇·(A∇φ)+κ2
psxsyφ=0, ∇·(A∇ψ)+κ2

s sxsyψ=0 in ΩPML, (2.15)
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Figure 2: The problem geometry of obstacle scattering with PML.

where

A=

[
sy/sx 0

0 sx/sy

]
is the parameter matrix.

According to the wave decays exponentially in the PML [10], we apply the Dirichlet
conditions on the outer boundary of PML

φ=0, ψ=0 on Γp. (2.16)

2.2 The reduced problem with TBC

The TBC technique is introduced for the scattering problem in this subsection. After
imposing TBC on ΓB, the truncated bounded domain is represented by ΩTBC with the
boundary ∂ΩTBC = ΓD

⋃
ΓB, as shown in Fig. 3. The transparent boundary ΓB is a circle

with the radius R.
As is known, the exterior Helmholtz equations (2.6) in Ω can be analytically solved

with the following Fourier series forms

φ(r,θ)=
1
π

∞

∑
n=0

′
∫ 2π

0

H(1)
n (κpr)

H(1)
n (κpR)

cosn(θ−θ′)φ(R,θ′)dθ′, (2.17a)

ψ(r,θ)=
1
π

∞

∑
n=0

′
∫ 2π

0

H(1)
n (κsr)

H(1)
n (κsR)

cosn(θ−θ′)ψ(R,θ′)dθ′, (2.17b)
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Figure 3: The problem geometry of obstacle scattering with TBC.

where φ(R,θ′) and ψ(R,θ′) are prescribed Dirichlet data on ΓB. H(1)
n is the Hankel func-

tion of the first kind with n order, and the prime after the sum indicates that the first term
of the series needs to be multiplied by 1

2 .
Take the normal derivative of φ, ψ in Eq. (2.17), we have

∂φ(r,θ)
∂n

∣∣∣
r=R

=−
∞

∑
n=0

′
∫ 2π

0
m1(θ−θ′)φ(R,θ′)dθ′=−M1φ(R,θ) on ΓB, (2.18a)

∂ψ(r,θ)
∂n

∣∣∣
r=R

=−
∞

∑
n=0

′
∫ 2π

0
m2(θ−θ′)ψ(R,θ′)dθ′=−M2ψ(R,θ) on ΓB, (2.18b)

where M1, M2 are the DtN operators, as called TBC [42], the coefficients m1(θ−θ′), m2(θ−
θ′) are written as

m1(θ−θ′)=−
κp

π

H(1)′
n (κpR)

H(1)
n (κpR)

(cosnθcosnθ′+sinnθsinnθ′), (2.19a)

m2(θ−θ′)=−κs

π

H(1)′
n (κsR)

H(1)
n (κsR)

(cosnθcosnθ′+sinnθsinnθ′). (2.19b)

3 Formulation of NS-FEM with the linear gradient field

This section firstly introduces the node-based SD (N-SD) and the weakened weak for-
mulation of NS-FEM. Then the linear gradient field is constructed on each N-SD using
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polynomial basis with the complete first order for 2D and the unknown coefficients can
be solved by three linear independent weight functions. Based on the linear gradient
function, a modified smoothed gradient matrix can be calculated for each N-SD.

3.1 Node-based smoothing domains

In this subsection, k-th N-SD is constructed by successively connecting centroid of the
element and midpoint of the edge adjacent to the k-th node. The number of N-SDs is
the same as that of nodes. Fig. 4 with 19 N-SDs is constructed by 24 triangular element
meshes.

Figure 4: The original triangular elements (solid lines) and N-SD (dashed lines).

3.2 The gradient approximation for original NS-FEM

The gradient of a scalar function indicates the direction derivative of the function at one
point, which is frequently used in the weak form of the standard FEM. The standard FEM
is based on the linear Lagrange element in this paper. Assuming that the potentials can
be approximated by interpolation of shape functions, we have

φ(x)=
Np

∑
i=1

Ni(x)φi, ψ(x)=
Np

∑
i=1

Ni(x)ψi, (3.1)

where Np represents the number of nodes in the mesh, φi and ψi are the values of poten-
tials φ and ψ at the node xi, i.e., φi=φ(xi) and ψi=ψ(xi); Ni(x) is the nodal shape function
in the standard FEM and S-FEM.



1570 Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601

In the standard FEM, the gradients of potentials need to be evaluated using the fol-
lowing relation

∇φ=Ldφ=
Np

∑
i=1

LdNi(x)φi =
Np

∑
i=1

Biφi, (3.2a)

∇ψ=Ldψ=
Np

∑
i=1

LdNi(x)ψi =
Np

∑
i=1

Biφi, (3.2b)

where Bi =LdNi(x)= [∂Ni/∂x ∂Ni/∂y]T is the gradient matrix, in which Ld =[∂x ∂y]T is
a 2D gradient operator. It is evident that the derivatives of shape functions are needed in
this calculation.

In the original NS-FEM, using the generalized smoothing operation, the smoothed
gradients of potentials are evaluated as follows

∇φ=
Ns

∑
k=1

∫
Ωs

k

Ldφ(x)w(xk−x)dΩ, ∇ψ=
Ns

∑
k=1

∫
Ωs

k

Ldψ(x)w(xk−x)dΩ, (3.3)

where Ns is the number of smoothing domains, w(xk−x) is a weight function associated
with xk, and Ωs

k is the k-th N-SD. The weight function takes the Heaviside-type function
and has the following

w(xk−x)=


1

As
k
, x∈Ωs

k,

0, x /∈Ωs
k,

(3.4)

where As
k is the area of smoothing domain.

Using the Green’s divergence theorem and Ldw(xk−x) = 0, the smoothed gradient
given in Eq. (3.3) can be rewritten as

∇φ=
Ns

∑
k=1

∫
Ωs

k

Ldφ(x)w(xk−x)dΩ=
Ns

∑
i=1

1
As

k

∫
Γs

k

Lnφ(x)dΓ, (3.5a)

∇ψ=
Ns

∑
k=1

∫
Ωs

k

Ldψ(x)w(xk−x)dΩ=
Ns

∑
i=1

1
As

k

∫
Γs

k

Lnψ(x)dΓ, (3.5b)

where Ln(x)= [nx ny]T is the unit outward normal vector. From Eq. (3.5), we find that
the smoothed gradients are constants inside each smoothing domain, and can be written
as

∇φ=
Ns

∑
i=1

1
As

k

∫
Γs

k

LnNk(x)dΓφk =
Ns

∑
k=1

B̂k(x)φk, (3.6a)

∇ψ=
Ns

∑
i=1

1
As

k

∫
Γs

k

LnNk(x)dΓψk =
Ns

∑
k=1

B̂k(x)ψk, (3.6b)
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where B̂(x)= [bkx bky]
T, and bkl is evaluated using the following Gauss quadrature

bkl =
1

As
k

∫
Γs

k

nl(x)Nk(x)dΓ=
1

As
k

Nseg
k

∑
q=1

( Ng

∑
g=1

wgnl(xg)Nk(xg)Lq

)
, l= x,y, (3.7)

where Nseg
k is the number of segments on the boundary Γs

k; Lq is the length of the q-th
segment in the k-th smoothing domain. Ng is the number of the Gauss points xg in each
segment and wg is the Gauss weight coefficient. Generally, one Gauss-point is used for
2D problem.

3.3 The construction of linear gradient field

The N-SDs are constructed by adjacent parts of the nodes in the finite element mesh,
and the smoothed gradients are constants (simply averaging) in each smoothing do-
main. Hence the constant gradient is a rough approximation and cannot reflect gradient
changes over the smoothing domain Ωs

k for the real gradient, which may lose accuracy.
To cure this defect of original NS-FEM, the changes of gradients of potentials should

be considered. Recently, Li and Liu [41] reconstructed the smoothed derivatives of func-
tions by using the pick-out technique and high-order smoothed strain field for mechanics
problems, which can overcome the overly-soft deficiency of NS-FEM.

Assuming that the gradient functions are linearly continuous variation with respect
to x and y in smoothing domain Ωs

k, and have the following Taylor expansion form at
point x=(xk,yk),

∇W(x)= c0+cx(x−xk)+cy(y−yk), W=φ,ψ, (3.8)

where c0 =[c01 c02]T, cx =[cx1 cx2]T, cy =[cy1 cy2]T, are unknown coefficients. According
to the S-FEM theory, when the weight function is continuous, the gradient function and
the smoothed gradient function are equal in the integral sense, i.e.,∫

Ωs
k

∇W(x)w(x−xk)dΩ=
∫

Ωs
k

∇W(x)w(x−xk)dΩ, (3.9)

where w(x−xk) is a continuous weight function in Ωs
k. Substituting Eq. (3.8) into Eq. (3.9),

we have∫
Ωs

k

∇W(x)w(x−xk)dΩ=
∫

Ωs
k

(c0+cx(x−xk)+cy(y−yk))w(x−xk)dΩ. (3.10)

In order to determine coefficients c0, cx, cy, three linearly independent weight functions
are established about the node xk in the smoothing domain Ωs

k as

w1(x−xk)=
1

M0
, w2(x−xk)=

x−xk

Mxx
, w3(x−xk)=

y−yk

Myy
. (3.11)
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Substituting three weight functions given in Eq. (3.11) into Eq. (3.10), we have

1
M0

∫
Ωs

k

∇W(x)dΩ= c0+cx
Mx

M0
+cy

My

M0
, (3.12a)

1
Mxx

∫
Ωs

k

∇W(x)(x−xk)dΩ= c0
Mx

Mxx
+cx+cy

Mxy

Mxx
, (3.12b)

1
Myy

∫
Ωs

k

∇W(x)(y−yk)dΩ= c0
My

Myy
+cx

Mxy

Myy
+cy, (3.12c)

where M0 is the zeroth moment; Mx and My are the first moments; Mxx, Mxy and Myy
are the second moments. They can be expressed as

M0=As
k, Mx =

∫
Ωs

k

(x−xk)dΩ, My =
∫

Ωs
k

(y−yk)dΩ, (3.13a)

Mxx =
∫

Ωs
k

(x−xk)
2dΩ, Mxy =

∫
Ωs

k

(x−xk)(y−yk)dΩ, Myy =
∫

Ωs
k

(y−yk)
2dΩ. (3.13b)

Note that these moments can be calculated by formulas provided by Liggestt [43]. The
left terms of Eqs. (3.12a)-(3.12c) form a vector, which is noted as

g=
[

1
M0

∫
Ωs

k

∇W(x)dΩ
1

Mxx

∫
Ωs

k

∇W(x)(x−xk)dΩ
1

Myy

∫
Ωs

k

∇W(x)(y−yk)dΩ
]T

,

and can also be rewritten as[
g01 g02 gx1 gx2 gy1 gy2

]T ,

where

g01=
1

M0

∫
Ωs

k

∂xW(x)dΩ, g02=
1

M0

∫
Ωs

k

∂yW(x)dΩ,

gx1=
1

Mxx

∫
Ωs

k

∂xW(x)(x−xk)dΩ, gx2=
1

Mxx

∫
Ωs

k

∂yW(x)(x−xk)dΩ,

gy1=
1

Myy

∫
Ωs

k

∂xW(x)(y−yk)dΩ, gy2=
1

Myy

∫
Ωs

k

∂yW(x)(y−yk)dΩ.

Then Eqs. (3.12a)-(3.12c) can be rewritten into the following matrix form

Mc1=g1, Mc2=g2, (3.14)

where

M=

 1 Mx/M0 My/M0
Mx/Mxx 1 Mxy/Mxx
My/Myy Mxy/Myy 1

,

c1=
[
c01 cx1 cy1

]T , c2=
[
c02 cx2 cy2

]T ,

g1=
[
g01 gx1 gy1

]T , g2=
[
g02 gx2 gy2

]T .
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Since the nominal orders of the three smoothing functions are different, the matrix is
linearly independent and invertible, which can be denoted by

M−1=

m′11 m′12 m′13
m′21 m′22 m′23
m′31 m′32 m′33

. (3.15)

Then the unknowns can be solved by

c1=M−1g1, c2=M−1g2, (3.16)

where g1, g2 can be evaluated by applying Green’s theorem to g, and we get

g=



1
M0

∫
Γs

k

LnW(x)dΓ

1
Mxx

[∫
Γs

k

LnW(x)(x−xk)dΓ−
∫

Ωs
k

Ld(x−xk)W(x)dΩ
]

1
Myy

[∫
Γs

k

LnW(x)(y−yk)dΓ−
∫

Ωs
k

Ld(y−yk)W(x)dΩ
]


. (3.17)

The potentials can be approximated by interpolation of shape functions

W(x)=
[
N1 N2 ··· NNp

][
W1 W2 ··· WNp

]T
=NTW, W=φ,ψ. (3.18)

Substituting the above equation into Eq. (3.17), we have

g=



1
M0

∫
Γs

k

LnN(x)TdΓW

1
Mxx

[∫
Γs

k

LnN(x)(x−xk)dΓ−
∫

Ωs
k

Ld(x−xk)N(x)TdΩ
]
W

1
Myy

[∫
Γs

k

LnN(x)(y−yk)dΓ−
∫

Ωs
k

Ld(y−yk)N(x)TdΩ
]
W


=

Bc
0W

Bc
xW

Bc
yW

. (3.19)

Therefore, using Eqs. (3.8), (3.15), (3.16) and (3.19), the smoothed gradient can be ex-
pressed as

∇W(x)= [B̄s
k0+B̄s

kx(x−xk)+B̄s
ky(y−yk)]W= B̄(x)W, (3.20)

where B̄(x) is the modified smoothed gradient matrix, and B̄s
k0, B̄s

kx, B̄s
ky are calculated as

follows 
B̄s

k0=m′11Bc
0+m′12Bc

x+m′13Bc
y,

B̄s
kx =m′21Bc

0+m′22Bc
x+m′23Bc

y,

B̄s
ky =m′31Bc

0+m′32Bc
x+m′33Bc

y.
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4 The discretized formulation for NS-FEM-L

In this subsection, we discuss the approximation formulations of coupled boundary prob-
lem by using NS-FEM-L model. Two truncated techniques (PML and TBC) are used in the
discretized formulations and are named as NS-FEM-L-PML and NS-FEM-L-TBC, respec-
tively. Based on this weak form in FEM and the linear smoothed gradient in Subsection
3.3, the weakened weak formulations of two NS-FEM-L models are given as follows for
elastic wave obstacle scattering problem.

4.1 NS-FEM-L with PML

The NS-FEM-L formulations with PML are considered in this subsection. By using the
second scalar Green’s theorem, the weak forms of Eq. (2.15), Eq. (2.7) and Eq. (2.16) are
as follows

∫
ΩPML

(A∇φ)·∇ξdΩ−κ2
p

∫
ΩPML

sxsyφξdΩ+
∫

ΓD

∂τψξdΓ=
∫

ΓD

f ξdΓ,∫
ΩPML

(A∇ψ)·∇ηdΩ−κ2
s

∫
ΩPML

sxsyψηdΩ+
∫

ΓD

∂τφηdΓ=
∫

ΓD

gηdΓ,
(4.1)

where ξ and η are test functions. The weakened weak forms of Eq. (4.1) by using the
smoothing operator can be written as

Ns

∑
k=1

∫
Ωs

k

(∇ξ)·(A∇φ)dΩ−κ2
p

∫
ΩPML

sxsyξφdΩ+
∫

ΓD

ξ∂τψdΓ=
∫

ΓD

ξ f dΓ,

Ns

∑
k=1

∫
Ωs

k

(∇η)·(A∇ψ)dΩ−κ2
s

∫
ΩPML

sxsyηψdΩ+
∫

ΓD

η∂τφdΓ=
∫

ΓD

ηgdΓ.

(4.2)

According to Eq. (3.20), the above equations can be written as the following matrix form

[K−P+Kb]Φ=F, (4.3)

where Φ=[φ ψ]T denotes an unknown nodal vector, in which φ and ψ consist of φe and
ψe, respectively. The modified smoothed stiffness matrix K possesses a ”close-to-exact”
stiffness and can be formed as follows

K=

[
K1 0
0 K2

]
, (4.4)

in which

K1=K2=
Nn

∑
k=1

(
Ks

k0+Ks
kx+Ks

ky+Ks
kxx+Ks

kxy+Ks
kyy

)
,
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and can be expressed as

Ks
k0=As

k(B̄
s
k0)

TAB̄s
k0, Ks

kx =
(
(B̄s

k0)
TAB̄s

kx+(B̄s
kx)

T AB̄s
k0

)
Mx, (4.5a)

Ks
ky =

(
(B̄s

k0)
TAB̄s

ky+B̄s
ky)

T AB̄s
k0

)
My, Ks

kxx =
(
B̄s

kx
)T AB̄s

kx Mxx, (4.5b)

Ks
kxy =

(
(B̄s

kx)
TAB̄s

ky+(B̄s
ky)

T AB̄s
kx

)
Mxy, Ks

kyy =
(

B̄s
ky

)T
AB̄s

ky Myy. (4.5c)

The mass matrix P consists of element mass matrix Pe, and

Pe =

[
κ2

pPe
1 0

0 κ2
s Pe

2

]
, Pe

1=Pe
2=

∫
ΩPML

e

sxsyNTNdΩ. (4.6)

The boundary stiffness matrix is

Ke
b =

[
0 κ2

pbe
1

−κ2
s be

2 0

]
, be

1=be
2=

∫
ΓD

e

NTτTNdΓ. (4.7)

The boundary element force vector Ke
b is

Fe =
[
Fe

1 Fe
2
]T , Fe

1=
∫

ΓD
e

NT f dΓ, Fe
2=

∫
ΓD

e

NTgdΓ. (4.8)

4.2 NS-FEM-L with TBC

The NS-FEM-L formulations with TBC of the coupled boundary problem are discussed
in this subsection. Based on the second scalar Green’s theorem, we have the following
weak forms of Eqs. (2.6), (2.7) and (2.18)

∫
ΩTBC

(∇φ)·∇ξdΩ−κ2
p

∫
ΩTBC

φξdΩ+
∫

ΓB

M1φξdΓ+
∫

ΓD

∂τψξdΓ=
∫

ΓD

f ξdΓ,∫
ΩTBC

(∇ψ)·∇ηdΩ−κ2
s

∫
ΩTBC

ψηdΩ+
∫

ΓB

M2ψηdΓ+
∫

ΓD

∂τφηdΓ=
∫

ΓD

gηdΓ,
(4.9)

where ξ and η are test functions. By using the smoothing operator, the weakened weak
forms of the above equations are written as

Ns

∑
k=1

∫
Ωs

k

(∇ξ)T ·∇φdΩ−κ2
p

∫
ΩTBC

ξφdΩ+
∫

ΓB

ξM1φdΓ+
∫

ΓD

ξ∂τψdΓ=
∫

ΓD

ξ f dΓ,

Ns

∑
k=1

∫
Ωs

k

(∇η)T ·∇ψdΩ−κ2
s

∫
ΩTBC

ηψdΩ+
∫

ΓB

ηM2ψdΓ+
∫

ΓD

η∂τφdΓ=
∫

ΓD

ηgdΓ.

(4.10)

According to the modified smoothed gradients given in Eq. (3.20), we have the matrix
form

[K−P−T−Kb]Φ=F, (4.11)
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where Φ= [φ ψ]T denotes an unknown nodal vector. Note that the obstacle boundary
stiffness matrix Kb and the vector F can be calculated as in Subsection 4.1. The system
stiffness matrix using the linear smoothed gradients can be calculated by

K=

[
K1 0
0 K2

]
, (4.12)

where

K1=K2=
Nn

∑
k=1

(Ks
k0+Ks

kx+Ks
ky+Ks

kxx+Ks
kxy+Ks

kyy),

and

Ks
k0=As

k(B̄
s
k0)

TB̄s
k0, Ks

kx =
(
(B̄s

k0)
TB̄s

kx+(B̄s
kx)

TB̄s
k0

)
Mx,

Ks
ky =

(
(B̄s

k0)
TB̄s

ky+B̄s
ky)

TB̄s
k0

)
My, Ks

kxx =
(
B̄s

kx
)T B̄s

kx Mxx,

Ks
kxy =

(
(B̄s

kx)
TB̄s

ky+(B̄s
ky)

TB̄s
kx

)
Mxy, Ks

kyy =
(

B̄s
ky

)T
B̄s

ky Myy.

The mass matrix P consists of the element mass matrix Pe, and

Pe =

[
κ2

pPe
1 0

0 κ2
s Pe

2

]
, (4.13)

where
Pe

1=Pe
2=

∫
ΩTBC

e

NTNdΩ.

The matrix T is associated with the TBC and can be given by

T=

[
T1 0
0 T2

]
, (4.14)

in which the element Tl
ij of matrix Tl , l = 1,2 at the i-th row and j-th column can be

evaluated by

T1
ij =

∫
ΓB

NI M1NJdΓ

=−
∞

∑
j=0

κp

π

H(1)′
n (κpR)

H(1)
n (κpR)

(∫
ΓB

NI(x)G(θ)dΓ
)(∫

ΓB

NI(x)G(θ′)TdΓ
)

, (4.15a)

T2
ij =

∫
ΓB

NI M2NJdΓ

=−
∞

∑
j=0

κs

π

H(1)′
n (κsR)

H(1)
n (κsR)

(∫
ΓB

NI(x)G(θ)dΓ
)(∫

ΓB

NI(x)G(θ′)TdΓ
)

, (4.15b)
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where NI and NJ are the shape functions related to node i and j, respectively. The function
G(θ) is

G(θ)=
[
cosnθ sinnθ

]
. (4.16)

Once the potentials are found through the governing equation (2.6) and boundary condi-
tions (2.7)-(2.8), the solutions of Navier equation can be calculated using Eq. (2.9).

5 Numerical experiments

In this section, the effectiveness of NS-FEM-L-PML and NS-FEM-LTBC models is stud-
ied through three numerical examples: the obstacle scattering with circle-shaped, ellipse-
shaped and acorn-shaped, and compared with standard FEM model. The relative errors,
L2 error and H1 semi-norm error are used to assess numerical solutions, which is per-
formed through the analytic solutions for circle-shaped obstacle and the reference solu-
tions for ellipse-shaped and acorn-shaped obstacles. The relative error (Er), L2 error (EL2)
and H1 semi-norm error (EH1) in the numerical computational domain ΩN can be defined
as follows

Er =

√√√√ N

∑
i=1

(v̄e
i−v̄n

i )
T(ve

i−vn
i )/

N

∑
i=1

(v̄e
i )(v

e
i ), (5.1a)

EL2 =

√∫
ΩN

(v̄e−v̄n)T(ve−vn)dx, (5.1b)

EH1 =

√∫
ΩN

(∇v̄e−∇v̄n)T(∇ve−∇vn)dx, (5.1c)

where v denotes the solution of the problem, such as φ, ψ, or [φ ψ], and the supscript e
and n denote the analytical/ reference solutions and the numerical solution, respectively.
The subscript i denotes the value of the i-th node, i=1,2,··· ,N, in which N is the number
of nodes in the mesh. Besides, v̄e and v̄n are the corresponding complex conjugates.

5.1 Scattering by a cylinder with a circle cross section

We consider the scattering of a plane wave by a cylinder with a circle cross section, and
the radius of the circle is R, as shown in Fig. 5. Assuming that the cylinder has no change
in the z-axis direction, the problem is transformed into a two-dimensional problem.

The analytical solutions [5] with Fourier series expansions of this above problem in
the polar coordinates are

φ(r,θ)= ∑
n∈Z

H(1)
n (κpr)

H(1)
n (κpR)

φ(n)(R)einθ , ψ(r,θ)= ∑
n∈Z

H(1)
n (κsr)

H(1)
n (κsR)

ψ(n)(R)einθ , (5.2)
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Figure 5: The geometry structure of scattering by a cylinder with a circle cross section.

where φ(n) and ψ(n) are the Fourier modes of φ and ψ, and can be written as, respectively

φ(n)= c(n)
(

κsH(1)′
n (κsR)

H(1)
n (κsR)

f (n)− in
R

g(n)
)

, (5.3a)

ψ(n)= c(n)
(

in
R

f (n)+
κpH(1)′

n (κpR)

H(1)
n (κpR)

g(n)
)

, (5.3b)

in which

c(n)=
R2H(1)

n (κpR)H(1)
n (κsR)

R2κpκsH(1)′
n (κpR)H(1)′

n (κsR)−n2H(1)
n (κpR)H(1)

n (κsR)
,

f (n) and g(n) are the Fourier modes of the periodic functions f and g with 2π period, and
can be calculated by the fast Fourier transform (FFT).

In the calculation, only a single compressional wave is used to illuminate the obstacle,
i.e., uinc=deiκpx·d, which d=(1,0) is the propagation direction of wave. These parameters
of obstacle, PML and TBC are listed in Table 1. The truncated domains with PML and
TBC are shown in Fig. 6. In this example, the problem domains are discretized using
the meshes with different sizes of triangular elements, which are generated using Matlab
software.

The results of solving above scattering problem by using the NS-FEM with PML (NS-
FEM-PML) and TBC (NS-FEM-TBC) techniques are shown in Fig. 7. It can be found that
the numerical solutions of two NS-FEM models are much different from the exact so-
lution and they are not extremely stable. The reason is that the NS-FEM model cause
”over-soft” stiffness in the scattering problem. Therefore, this paper focuses on compar-
ing the NS-FEM-L and FEM models from different aspects.
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(a) (b)

Figure 6: Geometry structure of a circle-shaped obstacle scattering: (a) with the PML truncation; (b) with the
TBC truncation.

(a) (b)

Figure 7: The magnitude of potentials obtained using NS-FEM model at angular frequency : (a) with PML
technique; (b) with TBC technique (at mesh h=0.22).

5.1.1 Accuracy of numerical solutions

The accuracy and stability of the NS-FEM-L with PML and TBC at different angular fre-
quencies will be discussed. In this numerical example, the characteristic length of mesh
h is 0.22, which generates a mesh with 3583 nodes and 6954 elements for PML domain,
and a mesh with 968 nodes and 1828 elements for TBC domain. Several different angular
frequencies are used to discuss the effect on the accuracy of solutions. Fig. 8 shows the
relative errors of potentials φ, ψ and scattered field v1, v2 on the circle with radius r= 2
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Table 1: These parameters about the obstacle, PML and TBC.

Type Parameters Symbols Values

Circle-shaped
obstacle

The radius of circle-shaped obstacle R 1
The radius of compare circle Rc 2

Lame constants λ 2
µ 1

The incident angle ϕ 0

PML

The PML interior boundaries xmin=ymin 3
The PML outer boundaries xmax=ymax 5

The parameters of PML functions σ1=σ2 20
The thickness of the PML dx =dy 2

TBC The radius of TBC Rt 3
The truncated number of TBC series N 30

obtained by using FEM-PML, FEM-TBC, NS-FEM-L-TBC and NS-FEM-L-PML models.
From these results, we find the following some conclusions:

1) For the FEM-PML and FEM-TBC models, the relative errors of potentials φ, ψ and
scattered field v1, v2 have the same trend. The relative errors of φ, ψ, (v1, v2) de-
crease for ω < 0.75π, (ω < 0.5π) and increase for ω > 0.75π, (ω > 0.5π), with the
angular frequency increasing. Hence, the minimum relative errors of potentials are
0.059 for FEM-PML, 0.047 for FEM-TBC models and those of scattered field are 0.090
for FEM-PML, 0.088 for FEM-TBC, which are obtained at ω= 0.75π and ω= 0.5π,
respectively.

2) For NS-FEM-L-PML and NS-FEM-L-TBC models, as the angular frequencies in-

(a) (b)

Figure 8: The relative errors of different models with the angular frequency by a circle-shaped obstacle scattering:
(a) potentials φ,ψ; (b)scattered field v1,v2.
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Table 2: The relative errors at circle r=2 for mesh size h=0.22.

Agular
frequency

Compressional
potential φ

Shear
potential ψ

Scattered field
v=(v1,v2)

FEM-PML

ω=π

0.0416 0.1459 0.1337
FEM-TBC 0.0360 0.1067 0.1224

NS-FEM-L-PML 0.0293 0.0607 0.0596
NS-FEM-L-TBC 0.0243 0.0454 0.0542

FEM-PML

ω=2π

0.0769 0.3506 0.3104
FEM-TBC 0.0721 0.2913 0.3131

NS-FEM-L-PML 0.0516 0.1098 0.1316
NS-FEM-L-TBC 0.0482 0.0879 0.1168

crease, the relative errors of solutions (potentials and scattered field) become de-
teriorate gradually. The minimum relative errors of potentials are 0.031 for NS-
FEM-L-PML and 0.032 for NS-FEM-L-TBC, and these of scattered field are 0.031 for
NS-FEM-L-PML and 0.039 for NS-FEM-L-TBC.

3) Compared to the FEM-PML and FEM-TBC models, the proposed models can obtain
more accurate solutions for potentials and scattered field. In addition, the NS-FEM-
L model is less sensitive to the wavenumber.

The relative errors of different models for the potentials (compressional and shear
potential) and scattered field on the circle r=2 at ω=π and ω=2π are listed in Table 2.
Fig. 9 and Fig. 10 show the real and imaginary part of solutions at ω=2π, respectively.

From the table and figures, we can see that:

1) For the same angular frequency and mesh, the error of compressional potential is
smaller than that of shear potential. This can also be easily seen from Fig. 9. This
is due to that the shear wavenumber is greater than the compressional at the same
angular frequency. It also indicates that the error of coupled Helmholtz equations
is mainly caused by shear potential.

2) From the error data and figures of potentials and scattered field, it is clearly seen
that numerical solutions of two NS-FEM-L models are closer to analytical solution.
This suggests that the NS-FEM-L models are effective for this kind of scattering
problem.

5.1.2 Convergence of numerical solutions

The convergence of NS-FEM-L-PML and NS-FEM-LTBC models will be considered at
different mesh density for this problem. In this calculation, the angular frequency is fixed
to 2π, and several different mesh models are generated by Matlab. Table 3 and Table 4 list
the number of nodes and elements of meshes for the PML and TBC problem domains,
respectively. From this table, we find that the degree of freedoms (Dofs) of the PML
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(a) (b)

(c) (d)

Figure 9: The potentials obtained using different models at ω=π by a circle-shaped obstacle scattering: (a)
Re(φ); (b) Re(ψ) ; (c) Im(φ); (d) Im(ψ) (at mesh h=0.22).

Table 3: The meshes for PML problem domain (circle-shaped obstacle).

Mesh Characteristic
length

of mesh

Total
number
of nodes

Total
number

of elements

Number of nodes on the obstacle
and PML boundary

Obstacle PML interior
boundary

PML outer
boundary

M1 0.40 1055 1990 16 62 104
M2 0.35 1358 2580 20 75 116
M3 0.30 1886 3612 24 84 136
M4 0.25 2668 5144 28 97 164
M5 0.20 4124 8012 32 124 204

problem domain is more than that of the TBC problem domain at the same characteristic
length of triangular element for solving the elastic wave scattering problem.
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(a) (b)

(c) (d)

Figure 10: The potentials obtained using different models at ω=2π by a circle-shaped obstacle scattering: (a)
Re(φ); (b) Re(ψ) ; (c) Im(φ); (d) Im(ψ) (at mesh h=0.22).

Table 4: The meshes for TBC problem domain (circle-shaped obstacle).

Mesh Characteristic
length of mesh

Total number
of nodes

Total number
of elements

Number of nodes on the obstacle
and TBC boundary

Obstacle TBC
M1 0.40 290 516 16 48
M2 0.35 373 670 20 56
M3 0.30 518 948 24 64
M4 0.25 714 1324 28 76
M5 0.20 1111 2094 32 96
M6 0.15 2003 3834 44 128

1) The PML problem domain
The convergence behavior of solutions (L2 norm and H1 semi-norm errors) for the
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(a) (b)

Figure 11: The convergence behavior from different models with PML for potentials by circle-shaped obstacle
scattering: (a) L2 error; (b) H1 semi-norm error.

Figure 12: The convergence rate of L2 error from different models with PML for scattered field by circle-shaped
obstacle scattering.

NS-FEM-L-PML method is considered, which is compared with the FEM-PML model.
Fig. 11(a) and Fig. 12 show the convergence rate of L2 error for potentials and scat-
tered field with the Dofs for the FEM-PML and NS-FEM-L-PML models at the angu-
lar frequency ω = 2π. Fig. 11(b) displays the H1 semi-norm error of potentials against
Dofs. It is clear from these figures that the convergence rates (L2, H1) of NS-FEM-L-PML
(r=−1.0897, r=−0.85654) are better than the FEM-PML (r=−0.75018, r=−0.63526) for
potentials, and the L2 error convergence rate of NS-FEM-L-PML (r=−0.86612) is better
than the FEM-PML (r=−0.63244) for scattered field, and the solution errors of two mod-
els decrease with mesh refining. In addition, it is found that the H1 error convergence rate
of the potentials is comparable to that of the L2 error of the scattered field. The reason is
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that the scattered field is transformed from the divergence and gradient of the potentials
in Eq. (2.9) in this paper. From these figures, we can also find that the errors of NS-FEM-L
model are smaller at the same mesh.

These results indicate that NS-FEM-L-PML can obtain higher accuracy of solutions
and the convergence behavior is better than FEM.
2) The TBC problem domain

Next, the convergence behavior of NS-FEM-L-TBC model is considered for this prob-
lem, which is compared with the FEM-TBC model. The angular frequency is set to 2π.
Fig. 13(a) and Fig. 14 show the convergence of L2 error for potentials and scattered field
with the Dofs for the FEM-TBC and NS-FEM-L-TBC models. Fig. 13(b) shows the H1

semi-norm error versus the logarithm of Dofs. Fig. 13(a) and Fig. 14 show that the L2

error convergence rate of the NS-FEM-L-TBC (r=−0.84606, r=−0.79914) is better than
that of the FEM-TBC (r=−0.7625, r=−0.677) for potentials and scattered field; the H1
semi-norm error convergence rate of the NS-FEM-L-TBC (r=−0.79757) is also better than
that of the FEM-TBC (r =−0.67553) for potentials. This result also verifies that the H1

semi-norm error of potentials is consistent with the L2 error of scattered field. These re-
sults suggest that the convergence property of the proposed method is better than that of
the FEM-TBC for this scattering problem. Meanwhile, NS-FEM-L-TBC model can obtain
higher accuracy of solutions.

(a) (b)

Figure 13: The convergence behavior from different models with TBC for potentials by circle-shaped obstacle
scattering: (a) L2 error;(b) H1 semi-norm error.

5.2 Scattering by the elliptical obstacle

The scattering problem by an elliptical obstacle is studied in the subsection. Fig. 15 shows
the truncated domains with PML and TBC for an elliptical obstacle. The related param-
eters for PML and TBC and material parameters are the same as those of Section 5.1.
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Figure 14: The convergence rate of L2 error from different models with TBC for scattered field by circle-shaped
obstacle scattering.

(a) (b)

Figure 15: Geometry structure of an ellipse-shaped obstacle scattering: (a) with the PML truncation; (b) with
the TBC truncation.

The incident wave is a compressional wave, and the incident angle is 0. The parametric
equations of the obstacle boundary are

x(t)=cos(t), y(t)=0.5sin(t), (5.4)

where the parameter t∈[0 2π]. For the convenience of comparison, the reference solution
is obtained by using Freefem++ software and taking the continuous piecewise quadratic
function as the basis function. Besides, all meshes in this experiment are generated by
Freefem++ software.
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5.2.1 Accuracy of numerical solutions

The accuracy of solutions by the NS-FEM-L with PML and TBC for the elliptical obstacle
scattering at different angular frequencies are discussed in this sub-section. In this exper-
iment, the mesh is fixed. The PML model includes 7437 nodes and 14464 elements, where
the characteristic length is 0.16. The TBC model includes 2552 nodes and 4834 elements,
where the characteristic length is 0.145. Fig. 16 shows the relative errors of numerical
solutions (φ, ψ and v1, v2) on the circle r=2 with different angular frequencies. The circle
sets 90 nodes for PML and TBC models. From the above results, the following can be
found:

1) For the two FEM models, the numerical errors at small angular frequency (ω ∈
[0.25π,0.75π]) are relatively large, and then the errors increase as the angular fre-
quency increases. For the NS-FEM-L models, both NS-FEM-L-PML and NS-FEM-
L-TBC models increase as angular frequency increases. Moreover, the solution of
two NS-FEM-L models also keeps a small error at small angular frequency. These
results indicate that two NS-FEM-L models are not very sensitive to angular fre-
quency;

2) For the same mesh and angular frequency, it can be found that the error of the
proposed method is smaller than that of FEM, which shows that NS-FEM-L model
is more stable.

To compare the numerical solutions of different models more clearly, the magnitudes
of potentials and scattered field (ω = 2π) are plotted in Fig. 17 and Fig. 18. The mesh
consists of 4049 nodes and 7798 elements for PML problem domain, and its characteristic
length is 0.22; the mesh includes 1486 nodes and 2786 elements for TBC problem domain

(a) (b)

Figure 16: The relative errors of different models with the angular frequency by an ellipse-shaped obstacle: (a)
potentials φ, ψ; (b) scattered field v1, v2.
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(a) (b) (c)

(d) (e) (f)

Figure 17: The magnitudes of potentials obtained using different models by an elliptical obstacle: (a) FEM-
PML; (b) NS-FEM-L-PML; (c) reference solutions (PML); (d) FEM-TBC; (e) NS-FEM-L-TBC; (f) reference
solutions (TBC).

and its characteristic length is 0.19. From these figures, we can observe that the solution
of NS-FEM-L model is closer to reference solution than that of FEM model, regardless of
PML or TBC techniques. These results also show that the solutions of NS-FEM-L models
have high accuracy and stability.

5.2.2 Convergence of numerical solutions

The convergence behavior of numerical solutions by NS-FEM-L with PML and TBC for
the elliptical obstacle scattering are considered in this sub-section. The angular frequency
is taken as 2π and the meshes that generated by Freefem++ software are used for conver-
gence analysis. The numbers of nodes and elements in PML and TBC problem domains
are listed in Table 5 and Table 6, respectively.

1) The PML problem domain
The convergence behavior of NS-FEM-L-PML and FEM-PML models are analyzed

in this subsection. Fig. 19 shows the convergence rate of potentials, including L2 error
and H1 semi-norm error, respectively. Fig. 20 shows the convergence rate of L2 error for
the scattered field. From Fig. 19(a) and Fig. 20, we can see that the convergence rates of
L2 error of the NS-FEM-L-PML model (r=−1.2236, r=−0.98214) are better than that of
the FEM-PML (r=−0.88437, r=−0.76526). It can be found from Fig. 19(b) and Fig. 20
that the convergence rate of L2 error of the scattered field (r =−0.988, r =−0.78299) is
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(a) (b) (c)

(d) (e) (f)

Figure 18: The magnitudes of scattered field obtained using different models by an elliptical obstacle: (a) FEM-
PML; (b) NS-FEM-L-PML; (c) reference solutions (PML); (d) FEM-TBC; (e) NS-FEM-L-TBC; (f) reference
solutions (TBC).

Table 5: The meshes for PML problem domain (ellipse-shaped obstacle).

Mesh Characteristic
length

of mesh

Total
number
of nodes

Total
number

of elements

Number of nodes on the obstacle
and PML boundary

Obstacle PML interior
boundary

PML outer
boundary

M1 0.35 1625 3098 24 96 128
M2 0.27 2772 5352 32 128 160
M3 0.22 4196 8160 40 160 192
M4 0.18 5893 11514 48 192 224

Table 6: The meshes for TBC problem domain (ellipse-shaped obstacle).

Mesh Characteristic
length of mesh

Total number
of nodes

Total number
of elements

Number of nodes on the obstacle
and TBC boundary

Obstacle TBC
M1 0.30 585 1074 24 72
M2 0.23 1003 1878 32 96
M3 0.18 1591 3022 40 120
M4 0.15 2305 4418 48 144



1590 Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601

(a) (b)

Figure 19: The convergence behavior from different models with PML for potentials by ellipse-shaped obstacle
scattering: (a) L2 error; (b) H1 semi-norm error.

Figure 20: The convergence rate of L2 error from different models with PML for scattered field by ellipse-shaped
obstacle scattering.

consistent with the convergence rate of H1 semi-norm error of potentials (r=−0.98214, r=
−0.76526). Besides, these figures also show that the numerical errors (L2 error, H1 semi-
norm error) of NS-FEM-L-PML model is smaller at the same degree of freedoms. These
conclusions suggest that the NS-FEM-L-PML model is an effective numerical method for
solving scattering problems.

2) The TBC problem domain
The convergence behavior of the NS-FEM-L-TBC model is considered in this subsec-

tion. Fig. 21 shows the convergence rates of L2 error and H1 semi-norm error for poten-
tials. The convergence rates of L2 error and H1 semi-norm error are −1.2695, −0.86705
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(a) (b)

Figure 21: The convergence behavior from different models with TBC for potentials by ellipse-shaped obstacle
scattering: (a) L2 error; (b) H1 semi-norm error.

Figure 22: The convergence rate of L2 error from different models with TBC for scattered field by ellipse-shaped
obstacle scattering.

for NS-FEM-L-TBC model, which are higher than FEM-TBC model (r =−0.89885, r =
−0.75786). The L2 convergence rate of scattered field is shown in Fig. 22. The conver-
gence rate of H1 semi-norm error for scattered field (r=−0.87011, r=−0.77946) is basi-
cally the same as the L2 convergence rate of the potentials by using the two models. Form
these figures, it is clearly seen that the NS-FEM-L-TBC model can obtain high accuracy
and better convergence rate.

5.3 Scattering by the acorn-shaped obstacle

The scattering problem by an acorn-shaped obstacle will be considered in the subsection.
The parameters of PML and TBC are the same as Example 1, the problem domains are
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(a) (b)

Figure 23: Geometry structure of an acorn-shaped obstacle scattering: (a) with the PML truncation; (b) with
the TBC truncation.

shown in Fig. 23. The incident wave is same as in Section 5.2. The parametric equations
for this acorn-shaped obstacle boundary are

x(t)=cos(t)(1+0.25cos(3t)), y(t)=sin(t)(1+0.25cos(3t)), (5.5)

where the parameter t∈ [0, 2π]. In this example, the reference solution is obtained by
Freefem++ software, where the basis function is the continuous piecewise quadratic func-
tion. Besides, all meshes in this experiment are generated by Freefem++ software.

5.3.1 Accuracy of numerical solutions

The accuracy of solutions of different models for the acorn-shaped obstacle scattering at
different angular frequencies is studied in this sub-section. In this calculation, several
different angular frequencies are selected and the mesh is fixed. Both PML and TBC
problem domains have 100 points on the obstacle and the circle of comparison. For PML
model, the mesh is discretized by setting 160 points on inner boundary and 200 points
on outer boundary of PML, which includes 5190 nodes and 10040 elements. For TBC
model, the mesh is discretized by setting 150 points on the TBC boundary, which includes
2186 nodes and 4122 elements. Fig. 24 shows the relative errors of the potentials and
scattered field at different angular frequencies, where the error on the red curve in Fig. 23
is calculated. From the results, the following can be observed:

1) For both PML and TBC models, the numerical solution of FEM is greatly affected by
the angular frequency, and its overall error is higher than that of NS-FEM-L model.
Besides, the error growth rate of NS-FEM-L models are much smaller than that of
FEM. It also shows that the NS-FEM-L model is stable.

2) The accuracy of the solution of the scattered field is not as high as that of the po-
tentials. The reason is that the scattered field is obtained by the transformation of
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(a) (b)

Figure 24: The relative errors of different models with the angular frequency by an acorn-shaped obstacle: (a)
potentials φ, ψ; (b) scattered field v1, v2.

the solution of the potentials through curl and gradient operator in Eq. (2.9), which
leads to certain errors.

Next, we study the magnitudes of the numerical solutions for different models at
angular frequency, as shown in Fig. 25 and Fig. 26. For the PML problem domain, the
mesh contains 2126 nodes and 4034 elements, where there are 50 nodes on the obstacle,
100 nodes on the PML inner boundary and 168 nodes on the PML outer boundary. For
TBC, the mesh consists of 1034 nodes and 1918 elements, with 50 nodes on the obstacle
and 75 nodes on the TBC boundary. From these results, it can see that the NS-FEM-L
model can obtain better solutions, especially near the obstacle boundary. It also suggests
that NS-FEM-L model can solve the problem more effectively.

5.3.2 Convergence of numerical solutions

In this sub-section, the convergence of numerical solutions by the NS-FEM-L-TBC models
are studied for the acorn-shaped obstacle scattering with fixed angular frequency 2π.
Table 7 and Table 8 list the mesh information of PML and TBC problem domains.

1) The PML problem domain
Firstly, the convergence behavior of PML problem by using NS-FEM-L-PML and

FEM-PML models is studied. Fig. 27(a) and Fig. 28 show the convergence results for po-
tentials and scattered field according to the L2 error versus the Dofs, respectively. From
these figures, it can be observed that the convergence rates of L2 error of NS-FEM-L-
PML model (r =−1.2055, r =−0.95929) are high than that of FEM-PML (r =−0.83852,
r =−0.77368) for potentials and scattered field. Fig. 27(b) plots the convergence result
with respect to H1 semi-norm error of potentials. The results indicate that NS-FEM-L-
PML model (r =−0.95831) converges faster than FEM-PML model (r =−0.64669). All
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(a) (b) (c)

(d) (e) (f)

Figure 25: The magnitudes of potentials obtained using different models by an acorn-shaped obstacle: (a) FEM-
PML; (b) NS-FEM-L-PML; (c)reference solutions (PML); (d) FEM-TBC; (e) NS-FEM-L-TBC; (f) reference
solutions (TBC).

Table 7: The meshes for PML problem domain (acorn-shaped obstacle).

Mesh Characteristic
length

of mesh

Total
number
of nodes

Total
number

of elements

Number of nodes on the obstacle
and PML boundary

Obstacle PML interior
boundary

PML outer
boundary

M1 0.36 1437 2702 40 80 132
M2 0.30 2126 4034 50 100 168
M3 0.22 4207 8124 70 140 220
M4 0.17 6855 16460 90 180 300

Table 8: The meshes for TBC problem domain (acorn-shaped obstacle).

Mesh Characteristic
length of mesh

Total number
of nodes

Total number
of elements

Number of nodes on the obstacle
and TBC boundary

Obstacle TBC
M1 0.32 466 832 40 60
M2 0.26 731 1337 50 75
M3 0.19 1386 2597 70 90
M4 0.15 2262 4299 90 135
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(a) (b) (c)

(d) (e) (f)

Figure 26: The magnitudes of scattered field obtained using different models by an acorn-shaped obstacle:
(a) FEM-PML; (b) NS-FEM-L-PML; (c) reference solutions (PML); (d) FEM-TBC; (e) NS-FEM-L-TBC; (f)
reference solutions (TBC).

(a) (b)

Figure 27: The convergence behavior from different models with PML for potentials by acorn-shaped obstacle
scattering: (a) L2 error; (b) H1 semi-norm error.

these conclusions indicate that the NS-FEM-L-PML model is superior to the FEM-PML
model.

2) The TBC problem domain



1596 Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601

Figure 28: The convergence rate of L2 error from different models with PML for scattered field by acorn-shaped
obstacle scattering.

(a) (b)

Figure 29: The convergence behavior from different models with TBC for potentials by acorn-shaped obstacle
scattering:(a)L2 error;(b)H1 semi-norm error.

Then, the convergence behavior of TBC method is discussed in this subsection. Fig. 29
shows the convergence rates of L2 and H1 semi-norm errors for potentials versus the
logarithm of Dofs. The convergence rate of L2 error of scattered field is shown in Fig. 30.
From these figures, the following can be observed:

1) The convergence rates (L2, H1) of the NS-FEM-L-TBC model for potentials (r =
−1.2799, r =−0.90368) are higher than those of the FEM-TBC (r =−0.87807, r =
−0.67366), and the error is smaller at the same mesh.

2) The NS-FEM-L-TBC model can provide better convergence rate (r=−0.91235) than
FEM-TBC (r=−0.78716) for scattered field.
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Figure 30: The convergence rate of L2 error from different models with TBC for scattered field by acorn-shaped
obstacle scattering.

In conclusion, these results indicate that NS-FEM-L-TBC model is more effective and
accurate than FEM model for solving this scattering problem.

Appendix: The uniqueness of Helmholtz decomposition

In the section, we give a brief illustration of Remark 2.1. Firstly, we apply TBC on the
appropriate boundary, and obtain the following boundary value problem of the total
field u (u=v+uinc) 

µ∆u+(λ+µ)∇∇·u+ω2u=0 in Ω,

u=0 on ΓD,

Bu=T u+g on ΓB,

(A.1)

where
g :=Buinc−T uinc and Bu=µ∂ru+(λ+µ)∇·ver,

in which er is the unit outward normal vector on ΓB. It is shown in [3] that the scattered
field satisfies the transparent boundary condition on ΓB

Bv=T v= ∑
n∈Z

Mnv(n)einθ , v= ∑
n∈Z

v(n)einθ ,

where Mn is a 2∗2 matrix.
Because TBCs are derived from the sommerfeld conditions, we have the following

Remark.

Remark A.1. The problem (2.2)-(2.4) is equivalent to the TBC truncated problem (A.1)
and the problem (2.6)-(2.8) is equivalent to the TBC truncated problem (2.6), (2.7) and
(2.18).
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Combined with above Remark, we need to illustrate the uniqueness of Helmholtz
decomposition through the well-posedness of truncated problems (A.1) and (2.6), (2.7),
(2.18) to demonstrate Remark 2.1. See the following Remark for details.

Remark A.2. Let v = u−uinc be the scattered field corresponding to the solution u of
the boundary value problem (A.1). Then the scattered field v can be decomposed using
the Helmholtz decomposition v=∇φ+curlψ, where φ=−κ−2

p ∇·v, ψ=κ−2
s curlv are the

solutions of the coupled boundary value problem (2.6), (2.7), (2.18), and the Helmholtz
decomposition is unique.

Proof. Let v=u−uinc be the scattered field corresponding to the solution u of the boundary
value problem (A.1), which is proved by its variational formulation in of [3, Theorem
3.10].

According to the relationship between scalar and vector curl operators, we can obtain

curlcurlv=−∆v+∇∇·v. (A.2)

Divide both sides of the Navier equation of the scattered field v by ω2, and then combine
with the above relationship, the Eq. (2.2) can be re-written as

−κ−2
s curlcurlv+κ−2

p ∇∇·v+v=0. (A.3)

Let
vp :=−κ−2

p ∇∇·v, vs :=κ−2
s curlcurlv. (A.4)

Then Eq. (A.3) becomes
v=vp+vs. (A.5)

It is clear that vp and vs satisfy

curlvp =0, ∇·vs =0. (A.6)

From Eqs. (A.4)-(A.6), we can get

∇∇·vp+κ2
pvp =0, ∆vs+κ2

s vs =0. (A.7)

If we take
φ :=−κ−2

p ∇·v, ψ :=κ−2
s curlv, (A.8)

then we have
v=vp+vs =∇φ+curlψ, (A.9)

where vp =∇φ and vs = curlψ, which is the Helmholtz decomposition of the scattered
field v. It is from Eqs. (A.7) and (A.8) that φ and ψ satisfy

∆φ+κ2
pφ=0, ∆ψ+κ2

s ψ=0. (A.10)
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Similarly, using Eq. (A.9), the boundary condition (2.3) and sommerfeld condition (2.4),
we can obtain the following boundary conditions for the potentials∂νφ+∂τψ= f , ∂νψ−∂τφ= g on ΓD,

lim
ρ→∞

ρ
1
2 (∂ρφ−iκpφ)=0, lim

ρ→∞
ρ

1
2 (∂ρψ−iκsψ)=0, ρ= |x|.

(A.11)

Besides, we can know that the variational problem of (2.6), (2.7), (2.18) has at most one
solution from in [3, Theorem 3.5], which implies the solutions φ=−κ−2

p ∇·v, ψ=κ−2
s curlv

are unique for the truncated potentials problem.
Combined the Remark A.1 with the uniqueness of solution v in problem (A.1) and

solutions φ=−κ−2
p ∇·v, ψ=κ−2

s curlv in truncated potentials problem, the uniqueness of
the Helmholtz decomposition can be obtained. It is clear that Remark 2.1 is hold based
on Remarks A.1 and A.2.

Acknowledgements

The authors was supported by the National Natural Science Foundation of China (Grant
Nos. 11901423, 12002290 and 11771321), the Youth Science and the Technology Research
Foundation of Shanxi Province (Grant Nos. 201901D211104 and 201901D211107) and the
Shanxi Youth Top-Notch Talent Support Program (Grant No. DT18100306).

References

[1] D. COLTON AND R. KRESS, Integral equation methods in scattering theory, Society for Industrial
and Applied Mathematics, 2013.

[2] D. COLTON AND R. KRESS, Inverse Acoustic and Electromagnetic Scattering Theory,
Springer, 1998.

[3] P. LI, Y. WANG, Z. WANG AND Y. ZHAO, Inverse obstacle scattering for elastic waves, Inverse
Problems, 32 (2016), p. 115018.

[4] L. TSANG, J. KONG AND K. DING, Scattering of Electromagnetic Waves: Theories and
Applications, John Wiley and Sons, 27 (2004).

[5] J. YUE, G. LIU, M. LI AND R. NIU, An edge-based smoothed finite element method for wave
scattering by an obstacle in elastic media, Eng. Anal. Bound. Elem., 101 (2019), pp. 121–138.

[6] Y. CHAI, Z. GONG AND W. LI ET AL., Application of smoothed finite element method to two-
dimensional exterior problems of acoustic radiation, Int. J. Comput. Methods, 15 (2017), p.
1850029.

[7] J. BERENGER, A perfect matched layer for the absorption of electromagnetic waves, J. Comput.
Phys., 114 (1994), pp. 185–200.

[8] J. BRAMBLE AND J. PASCIAK, Analysis of a finite PML approximation for the three dimensional
time-harmonic maxwell and acoustic scattering problems, Math. Comput., 76 (2007), pp. 597–614.

[9] T. HOHAGE, F. SCHMIDT AND Z. LIN, Solving time-harmonic scattering problems based on the
pole condition II: Convergence of the PML method, SIAM J. Math. Anal., 35 (2003), pp. 547–560.



1600 Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601

[10] Z. CHEN AND X. WU, An adaptive uniaxial perfectly matched layer method for time-harmonic
scattering problems, Numer. Math. Theor. Meth. Appl., 1 (2008), pp. 113–137.

[11] X. JIANG AND P. LI, An adaptive finite element PML method for the acoustic-elastic interaction in
three dimensions, Commun. Comput. Phys., 22 (2017), pp. 1486–1507.

[12] J. BRAMBLE, J. PASCIAK AND D. TRENEV, Analysis of a finite PML approximation to the three
dimensional elastic wave scattering problem, Math. Comput., 79 (2010), pp. 2079–2101.

[13] Z. CHEN, X. XIANG AND X. ZHANG, Convergence of the PML method for elastic wave scattering
problems, Math. Comput., 302 (2016), pp. 2687–2714.

[14] F. HASTINGS, J. SCHNEIDER AND S. BROSCHAT, Application of the perfectly matched layer
(PML) absorbing boundary condition to elastic wave propagation, J. Acous. Soc. Am., 100 (1996),
pp. 3061–3069.

[15] X. JIANG, P. LI AND J. LV ET AL., An adaptive finite element PML method for the elastic wave
scattering problem in periodic structures, ESAIM: Math. Model. Numer. Anal., 51 (2016), pp.
2017–2047.

[16] X. JIANG, P. LI AND J. LV ET AL., Convergence of the PML solution for elastic wave scattering by
biperiodic structures, Commun. Math. Sci., 16 (2018), pp. 987–1016.

[17] Z. HE, G. LIU AND Z. ZHONG ET AL., An edge-based smoothed finite element method (ES-FEM)
for analyzing three-dimensional acoustic problems, Comput. Methods Appl. Mech. Eng., 199
(2009), pp. 20–33.

[18] G. WANG, X. CUI AND Z. LIANG ET AL., A coupled smoothed finite element method (S-FEM) for
structural-acoustic analysis of shells, Eng. Anal. Bound. Elem., 61 (2015), pp. 207–217.

[19] F. WU, L. YAO AND M. HU ET AL., A stochastic perturbation edge-based smoothed finite element
method for the analysis of uncertain structural-acoustics problems with random variables, Eng.
Anal. Bound. Elem., 80 (2017), pp. 116–126.

[20] Y. CHAI, W. LI AND Z. GONG ET AL., Hybrid smoothed finite element method for two-
dimensional underwater acoustic scattering problems, Ocean Eng., 116 (2016), pp. 129–141.

[21] W. LI, Y. CHAI AND M. LEI ET AL., Numerical investigation of the edge-based gradient smoothing
technique for exterior Helmholtz equation in two dimensions, Comput. Struct., 182 (2017), pp.
149–164.

[22] Y. CHAI, Z. GONG AND W. LI ET AL., Application of smoothed finite element method to acoustic
scattering from underwater elastic objects, J. Acoust. Soc. Am., 141 (2017), pp. 3708–3708.

[23] Y. CHAI, W. LI AND T. LI ET AL., Analysis of underwater acoustic scattering problems using
stable node-based smoothed finite element method, Eng. Anal. Bound. Elem., 72 (2016), pp. 27–41.

[24] X. HU, X. CUI AND Q. ZHANG ET AL., The stable node-based smoothed finite element method for
analyzing acoustic radiation problems, Eng. Anal. Bound. Elem., 80 (2017), 142-151.

[25] P. MONK, Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.
[26] F. IHLENBURG, I. BABUSKA AND S. SAUTER, Reliability of finite element methods for the nu-

merical computation of waves, Adv. Eng. Software, 28 (1997), pp. 417–424.
[27] G. LIU AND G. ZHANG, Smoothed Point Interpolation Methods: G Space Theory and Weak-

ened Weak Forms, World Scientific, 2013.
[28] G. LIU AND N. TRUNG, Smoothed Finite Element Methods, CRC Press, 2016
[29] G. LIU, A G space theory and a weakened weak (W2) form for a unified formulation of compatible

and incompatible methods: Part I theory, Int. J. Numer. Methods Eng., 81 (2010), pp. 1093–1126.
[30] J. YUE, M. LI AND G. LIU ET AL., Proofs of the stability and convergence of a weakened weak

method using PIM shape functions, Comput. Math. Appl., 72 (2016), pp. 933–951.
[31] T. NGUYEN-THOI, H. VU-DO AND T. RABCZUK ET AL., A node-based smoothed finite element

method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular



Y. Wang, J. Yue, Y. Li and M. Li / Adv. Appl. Math. Mech., 15 (2023), pp. 1562-1601 1601

and tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 199 (2010), pp. 3005–3027.
[32] G. LIU, L. CHEN AND M. LI, S-FEM for fracture problems, theory, formulation and application,

Int. J. Comput. Methods, 11 (2014), p. 1343003.
[33] H. NGUYENXUAN, G. LIU AND T. NGUYENTHOI ET AL., An edge-based smoothed finite el-

ement method for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 18
(2009), pp. 5022–5039.

[34] S. WU, G. LIU AND X. CUI ET AL., An edge-based smoothed point interpolation method (ES-PIM)
for heat transfer analysis of rapid manufacturing system, Int. J. Heat Mass Transf., 53 (2010), pp.
1938–1950.

[35] Z. WU, J. YUE AND M. LI ET AL., An edge-based smoothed finite element method with TBC for
the elastic wave scattering by an obstacle, Commun. Comput. Phys., 30 (2021), pp. 709–748.

[36] G. LIU, T. NGUYEN-THOI AND H. NGUYEN-XUAN ET AL., A node-based smoothed finite ele-
ment method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct.,
87 (2009), pp. 14–26.

[37] G. LIU, M. CHEN AND M. LI, Lower bound of vibration modes using the node-based smoothed
finite element method (NS-FEM), Int. J. Comput. Methods, 14 (2017), p. 1750036

[38] Y. WANG, J. YUE, M. LI AND R. NIU, A stable node-based smoothed finite element method with
PML technique for the elastic wave obstacle scattering, Eng. Anal. Bound. Elem., 130 (2021), pp.
249–267.

[39] G. LIU, A novel pick-out theory and technique for constructing the smoothed derivatives of functions
for numerical methods, Int. J. Comput. Methods, 15 (2018), p. 1850070.

[40] Y. LI AND J. YUE, Contact analysis based on a linear strain node-based smoothed finite element
method with linear complementarity formulations, Int. J. Comput. Methods, (2021), p. 2141008.

[41] Y. LI AND G. LIU, A novel node-based smoothed finite element method with linear strain fields for
static, free and forced vibration analyses of solids, Appl. Math. Comput., 352 (2019), pp. 30–58.

[42] J. YUE, M. LI AND P. LI ET AL., Numerical solution of an inverse obstacle scattering problem for
elastic wave, Commun. Comput. Phys., 26 (2019), pp. 809–837.

[43] J. LIGGETT, Exact formulae for areas, volumes and moments of polygons and polyhedra, Commun.
Appl. Numer. Methods, 4 (1988), pp. 815–820.

[44] W. CHEW, J. JIN AND E. MICHIELSSEN, Complex coordinate stretching as a generalized absorbing
boundary condition, Microwave Opt. Tech. Lett., 15 (1997).


