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Abstract. A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook
(BGK) formulation is presented for the solution of the compressible Navier-Stokes
equations on arbitrary grids. The idea behind this approach is to combine the ro-
bustness of the BGK scheme with the accuracy of the DG methods in an effort to
develop a more accurate, efficient, and robust method for numerical simulations of
viscous flows in a wide range of flow regimes. Unlike the traditional discontinu-
ous Galerkin methods, where a Local Discontinuous Galerkin (LDG) formulation is
usually used to discretize the viscous fluxes in the Navier-Stokes equations, this DG
method uses a BGK scheme to compute the fluxes which not only couples the con-
vective and dissipative terms together, but also includes both discontinuous and
continuous representation in the flux evaluation at a cell interface through a simple
hybrid gas distribution function. The developed method is used to compute a va-
riety of viscous flow problems on arbitrary grids. The numerical results obtained
by this BGKDG method are extremely promising and encouraging in terms of both
accuracy and robustness, indicating its ability and potential to become not just a
competitive but simply a superior approach than the current available numerical
methods.
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1 Introduction

The accuracy of many finite-volume and finite-element methods currently used in
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computational science and engineering is at best second order. There are a number of
situations where these numerical methods do not reliably yield engineering-required
accuracy. The development of a practical higher-order (>2nd) solution method could
help alleviate this accuracy problem by significantly decreasing time required to achieve
an acceptable error level. Unfortunately, numerous reasons exist for why current
finite-volume algorithms are not practical at higher order and have remained second-
order. The root cause of many of these difficulties lies in the extended stencils that
these algorithms employ. By contrast, discontinuous Galerkin (DG) finite element for-
mulation introduces higher-order effects compactly within the element. While DG
was originally introduced by Reed and Hill [1] for solving the neutron transport equa-
tion back in 1973, major interest did not focus on it until the nineties [2–5]. Nowadays,
it is widely used in the computational fluid dynamics, computational aeroacoustics,
and computational electromagnetics, to name just a few [6–17]. The discontinuous
Galerkin methods (DGM) combine two advantageous features commonly associated
with finite element and finite volume methods (FVM). As in classical finite element
methods, accuracy is obtained by means of high-order polynomial approximation
within an element rather than by wide stencils as in the case of FVM. The physics of
wave propagation is, however, accounted for by solving the Riemann problems that
arise from the discontinuous representation of the solution at element interfaces. In
this respect, the methods are therefore similar to FVM. What is known so far about this
method offers a tantalizing glimpse of its full potential. Indeed, what sets this method
apart from the crowd is many attractive features it possesses: (1) It has several useful
mathematical properties with respect to conservation, stability, and convergence. (2)
The method can be easily extended to higher-order (>2nd) approximation. (3) The
method is well suited for complex geometries since it can be applied on unstructured
grids. In addition, the method can also handle non-conforming elements, where the
grids are allowed to have hanging nodes. (4) The method is highly parallelizable, as
it is compact and each element is independent. Since the elements are discontinuous,
and the inter-element communications are minimal, domain decomposition can be ef-
ficiently employed. The compactness also allows for structured and simplified coding
for the method. (5) It can easily handle adaptive strategies, since refining or coarsen-
ing a grid can be achieved without considering the continuity restriction commonly
associated with the conforming elements. The method allows easy implementation of
hp-refinement, for example, the order of accuracy, or shape, can vary from element to
element. (6) It has the ability to compute low Mach number flow problems without re-
course to the time-preconditioning techniques normally required for the finite volume
methods.

In contrast to the enormous advances in the theoretical and numerical analysis of
the DGM, the development of a viable, attractive, competitive, and ultimately supe-
rior DG method over the more mature and well-established second order methods is
relatively an untouched area. This is mainly due to the fact that DGM have a number
of weaknesses that have to be addressed, before they can be applied to flow problems
of practical interest in a complex configuration environment. In particular, how to ef-


