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Abstract. The boundary particle method (BPM) is a truly boundary-only colloca-
tion scheme, whose basis function is the high-order nonsingular general solution
or singular fundamental solution, based on the recursive composite multiple reci-
procity method (RC-MRM). The RC-MRM employs the high-order composite dif-
ferential operator to solve a much wider variety of inhomogeneous problems with
boundary-only collocation nodes while significantly reducing computational cost
via a recursive algorithm. In this study, we simulate the Kirchhoff plate bending
problems by the BPM based on the RC-MRM. Numerical results show that this
approach produces accurate solutions of plates subjected to various loadings with
boundary-only discretization.
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1 Introduction

In recent decades, the boundary-type meshfree methods, such as method of funda-
mental solution (MFS) [1–3], boundary knot method (BKM) [4], boundary colloca-
tion method (BCM) [5], regularized meshless method (RMM) [6, 7] and boundary
node method (BNM) [8, 9], have attracted a lot of attention in the numerical solution
of various partial differential equations. All the above-mentioned boundary meth-
ods can solve homogeneous problems with boundary-only discretization. However,
these methods require inner nodes in conjunction with the other techniques to handle
inhomogeneous problems, such as quasi-Monte-Carlo method [10], dual reciprocity
method (DRM) [11] and multiple reciprocity method (MRM) [12].
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Since 1980s the DRM and MRM have been emerging as the two most promising
techniques to handle inhomogeneous problems in conjunction with the boundary type
methods [11–13]. The striking advantage of the MRM over the DRM is that it does not
require using inner nodes at all for the particular solution. To take advantage of truly
boundary-only merit of the MRM, Chen [14, 15] developed the MRM-based meshfree
boundary particle method (BPM). However, the standard MRM is computationally ex-
pensive in the construction of the interpolation matrix and has limited feasibility for
general inhomogeneous problems due to its use of high-order Laplacian operators in
the annihilation process [12]. Chen and Jin [16, 17] presented the recursive composite
multiple reciprocity method (RC-MRM), which employs the high-order composite dif-
ferential operators to vanish the inhomogeneous term of various types. The RC-MRM
significantly expands the application territory of the BPM to a much wider variety of
inhomogeneous problems. In addition, the RC-MRM includes a recursive algorithm
to dramatically reduce the total computing cost.

This paper is organized as follows. Section 2 introduces the BPM based on RC-
MRM through its discretization to the Kirchhoff plate bending problems. The effi-
ciency and utility of this new technique are numerically examined in Section 3. Section
4 concludes this paper with some remarks and opening issues.

2 RC-MRM based BPM for plate bending

Without lose of generality, this section introduces the BPM through its discretization
to the Kirchhoff plate problems.

2.1 Plate bending

The deflection of a thin plate under a distributed loading is governed by the governing
equation

∇4w =
q
D

, (2.1)

where w is the deflection of the middle surface of plate, ∇4 denotes the biharmonic
operator, and D=Eh3/

(
12(1− ν2)

)
represents the flexural rigidity.

At every boundary point, the two boundary conditions have to be satisfied, which
are a combination of the following conditions: displacement, normal slope, bending
moment, and effective shear force. In this study, the following three types of boundary
conditions are encountered: (1) Clamped edge, denoted by C in this paper: w=0, θn=0,
where w and θn denote the displacement and normal slope condition, respectively. (2)
Simply supported edge, denoted by S in this paper: w=0, Mn=0, where Mn represents
the bending moment condition. (3) Free edge, denoted by F in this paper: Mn=0,
Vn=0, where Vn expresses the effective shear force.

The above boundary conditions can be expressed in terms of the deflection w as
follows.
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Normal slope:

θn =
∂w
∂n

=
∂w
∂x

dx
dn

+
∂w
∂y

dy
dn

=
∂w
∂x

cos α +
∂w
∂y

sin α, (2.2)

Normal bending moment:

Mn = −D
{

ν∇2w + (1− ν)
(

cos2 α
∂2w
∂x2 + sin2 α

∂2w
∂y2 + sin 2α

∂2w
∂x∂y

)}
, (2.3)

Normal effective shear:

Vn = −D
{
(cos α

∂

∂x
+ sin α

∂

∂y
)∇2w + (1− ν)(− sin α

∂

∂x
+ cos α

∂

∂y
)

·
(1

2
sin 2α(

∂2w
∂y2 −

∂2w
∂x2 ) + cos 2α

∂2w
∂x∂y

)}
, (2.4)

where n=[cos α, sin α] is the unit outward normal vector.

2.2 Recursive composite multiple reciprocity based BPM

The recursive composite multiple reciprocity technique uses the high-order compos-
ite differential operator to evaluate the particular solutions and employs a recursive
algorithm to significantly reduce computing cost .The details about the BPM based
on RC-MRM can be found in reference [16, 17]. To illustrate the BPM application to
plate bending, we consider a fully clamped plate subjected to a trigonometric loading
q=100q0 cos(λx) as follow:

42w =
100q0

D
cos(λx), x ∈ Ω, (2.5a)

w = 0, θn = 0, x ∈ ∂Ω. (2.5b)

By implementing the RC-MRM approach, the above inhomogeneous problem is trans-
formed to the following homogeneous problem.

(4+ λ2)42w = 0, x ∈ Ω, (2.6a)

42w =
100q0

D
cos(λx), x ∈ ∂Ω, (2.6b)

w = 0, θn = 0, x ∈ ∂Ω. (2.6c)

Hence the deflection w is approximated by a linear combination of the kernel function
of high-order composite differential operators of (4+ λ2)42 and 42. Note that the
kernel function represents either the fundamental solution [1], general solution [4, 5],
T-function [18] or de-singular fundamental solution [6, 7], which satisfies the high-
order composite differential operator equation. This study uses higher order singular
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fundamental solutions [12, 19] and nonsingular general solutions [14] of the compos-
ite differential operators. However, the Laplace equation has no nonsingular general
solution. Hon and Wu [20] propose the translate-invariant 2D Laplacian harmonic
function to efficiently solve the 2D Laplace problems. Chen and Jin [16] found and
verified the harmonic function of (m + 1)-order Laplace operator 4m+1

Hm(xi, yi) = r2m
ik exp

(− c(x2
ik − y2

ik)
)

cos(2cxikyik), (2.7)

where c is the shape parameter, and

rik =
√

(xi − xk)2 + (yi − yk)2, xik = xi − xk, yik = yi − yk.

This study uses the nonsingular harmonic function as the high-order Laplacian gen-
eral solution.

3 Numerical results and discussions

In this section we present several numerical examples to investigate the efficiency,
accuracy, and convergence of the RC-MRM based BPM on plate bending problems.

The mechanics parameters in the tested plates are E=2.1 × 1011, h=0.01, ν=0.3,
q0=106, NN is the number of boundary collocation points. The average relative error
is defined as

Lerr =
( 1

NT

NT

∑
i=1

∣∣∣w(i)− w̄(i)
w̄(i)

∣∣∣
2) 1

2
, (3.1)

where w̄(i) represents the deflection at xi in [21], w(i) denotes the numerical solution
via nonsingular or singular formulation at xi, and NT is the total number of testing
points in inner domain and on the boundary. Unless otherwise specified, NT is taken
to be 2601 for all plate bending problems in this paper.

In addition, the deflections presented in a tabular form are normalized by

Wi =
100D× w(i)

q0 × L4 , W̄i =
100D× w̄(i)

q0 × L4 ,

where L is the length of plate. The relative error is calculated by

rerr =
∣∣∣Wi − W̄i

W̄i

∣∣∣. (3.2)

In the BPM using singular fundamental solution, fictitious boundary outside the phys-
ical domain is a circle with radius R=2, whose center coincides with the center of the
plate.

The BPM using nonsingular kernel function avoids such a perplexing issue of ar-
bitrary fictitious boundary. On the other hand, the appropriate choice of the shape pa-
rameter c in nonsingular harmonic function Hm(xi, yi), however, is also problematic
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Figure 1: The coordinates in unit square plate.

and requires particular care. Through trial-error experiments, we find an empirical
formula:

c =
NN + 4

32
. (3.3)

The coordinates of a unit square plate are displayed in Fig. 1.

3.1 Square plates

Firstly, considering a simply-supported rectangular plate (SSSS) subjected to uniform
loading, we investigate the convergent rate and stability of the RC-MRM based BPM
and also examine the relationships between accuracy, conditioning number and the
other computational parameters such as fictitious radius R or shape parameter c.

Figure 2: Convergence and stability of the BPM using singular fundamental solution. (a) The error Lerr with
respect to NN (R=2); (b) the error Lerr for the fictitious radius R (NN=44); (c) the condition number
Cond (A) with respect to NN (R=2); (d) the condition number Cond (A) with the fictitious radius R
(NN=44).
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Fig. 2(a) shows the convergence curve obtained by the BPM with singular fun-
damental solution. Roughly speaking, the numerical accuracy improves in an oscil-
latory way with an increasing number of boundary collocation points NN, and then
appear far less improvement with the further increasing NN. It’s observed that only
40 or so boundary collocation points suffice reasonable accuracy. Fig. 2(b) depicts
the accuracy variation with respect to the increasing fictitious radius R. The numeri-
cal accuracy becomes obviously higher with the increase of R to some extent, before
it starts to become worse. We note that the better accuracy somewhat goes with the
worse ill-conditioning interpolation matrix, also reported in the other RBF literature.
This is contradictory to the common wisdom in numerical calculations. Figs. 2(c) and
2(d) display the condition number Cond of the BPM interpolation matrix A=(Aij)
with respect to NN and R ,respectively. There are several ways to mitigate the ef-
fect of bad conditioning, such as the domain decomposition method [23], precon-
ditioning technique based on approximate cardinal basis function, the fast multiple
method [24], regularization methods (e.g., the truncated singular value decomposi-
tion (TSVD)) [25, 26]. It is noted that in some cases presented below, the TSVD with
GCV function choice criterion is employed to obtain accurate and stable results. And
the MATLAB SVD code developed by Hansen [26] for the discrete ill-posed problem
has been adopted in our computations.

By the BPM using the nonsingular general solution, Figs. 3(a) and 3(b) display the
accuracy variation with respect to the increasing NN and c, respectively. Figs. 3(c) and
3(d) show the curves of the condition number with respect to NN and c, respectively.
It’s observed that the present method obtains best accuracy between 30 and 60 bound-

Figure 3: Convergence and stability for the method with nonsingular formulation. (a) The error Lerr with
respect to NN; (b) the error Lerr for the shape parameter c (NN=44); (c) the condition number Cond (A)
with respect to NN; (d) the condition number Cond (A) for the shape parameter c (NN=44).
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ary nodes, so does the accuracy variation with respect to c. The best shape parameter
c is found between 0.5 and 1.0. In addition, it is noted that the curve of the condition
number declines with the increasing of c. In the following, we investigate the accuracy
of the present RC-MRM based BPM solution of plates subjected to varied loadings.

(1) Uniform loading
Table 1: The maximum deflection (W) and its relative error (rerr) and average relative errors (Lerr) of
square plates under different boundary conditions (28 boundary nodes).

Boundary [21] BPM (nonsingular formulation) BPM (singular formulation)
Condition W̄ W rerr Lerr W rerr Lerr

CCCC 0.12653 0.12650 2.37E-04 / 0.12650 2.37E-04 /
SSSS 0.40624 0.40600 5.91E-04 2.10E-03 0.40620 9.85E-05 1.20E-03
CSCS 0.19171 0.19170 5.22E-05 1.50E-03 0.19170 5.22E-05 9.20E-03
SSSF 1.28600 1.15880 9.89E-02 5.35E-04 1.17980 8.26E-02 8.40E-03

Note: The deflection W̄ is given by Timoshenko [21]. The parameters are R=2 and c=(NN + 4)/32.

Table 1 illustrates the BPM solution of square plates of different boundary conditions
subjected to a uniform loading in comparison with the Timoshenko solution [21]. It
is observed that the present results agree well with Timoshenko solutions. As in the
other collocation methods, numerical errors tend to be worse around boundary. It is
noted that the relative error of the maximum deflection of SSSF plate (three simply-
supported and one free boundary conditions) is worse than those of the other bound-
ary condition cases. The reason is that its maximum deflection occurs on the free
edge. Both BPM results by using employing nonsingular and singular formulation
agree well with the exact solution. However, the nonsingular BPM avoids arbitrary
fictitious boundary outside physical domain required by the singular BPM.

(2) Nonuniform loading
A unit square plate with various loadings is calculated as below:

• Hydrostatic Pressure Loading: q(x, y)=q0(x).
By using the RC-MRM, the hydrostatic pressure loading term is differentiated to zero
by differential operator 4. The deflection w is approximated by a linear combination
of the kernel functions of high-order differential operators of 43 and 42.

• Exponential Loading: q(x, y)=2q0 exp(5(x− y)).
By using the RC-MRM, the exponential loading term is vanished by differential oper-

Table 2: The deflection and the corresponding relative error of SSSS (fully simply-supported) square plate
with hydrostatic pressure loading (28 boundary knots).

Coordinate
[21] Nonsingular Formulation Singular Formulation
W̄ W rerr W rerr

0.25, 0.5 0.1310 0.1311 7.63E-04 0.1311 7.63E-04
0.5, 0.5 0.2320 0.2031 4.93E-04 0.2031 4.93E-04
0.6, 0.5 0.2010 0.2027 8.46E-03 2.2027 8.46E-03

0.75, 0.5 0.1620 0.1662 2.59E-02 0.1627 4.32E-03
0.55, 0.5 (max) 0.2060 0.2054 2.91E-03 0.2054 2.91E-03

Note: The deflection W̄ is reported in [21]. The parameters are R=2 and c=(NN + 4)/32.
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Table 3: The deflection and the corresponding relative errors of CCCC (fully clamped) square plate with
various loading (36 boundary knots). NF: Nonsingular formulation. SF: singular formulation.

Loading Coordinate W̄ [21] W (NF) W (SF)
q0x 0.50, 0.50 0.06300 0.06320 0.06330

2q0 exp(5(x− y)) 0.64, 0.36 0.67423 0.67440 0.67500
100q0 cos(10x) 0.50, 0.50 1.71750 1.71120 1.71077
100q0 cos(10x) 0.66, 0.32 0.32058 0.32130 0.32135
Note: The deflection W̄ is calculated by the method in [22].

ator (4− λ2), where λ=5
√

2. The deflection is approximated by a linear combination
of the kernel functions of high-order differential operators of (4− λ2)42 and 42.

• Trigonometric Loading: q(x, y)=100q0 cos(10x).

By using the RC-MRM, the trigonometric loading term is vanished by differential op-
erator (4+ λ2), where λ=10. The deflection w is approximated by a linear combina-
tion of the kernel functions of differential operators of (4+ λ2)42 and 42.

Table 2 gives the results of the SSSS square plate with hydrostatic pressure loading.
Table 3 shows the result of the CCCC square plate with various loading. According to
Tables 2 and 3, the present results obtained by nonsingular and singular BPM formu-
lations both agree well with those obtained by the other approaches [21, 22]. Figs. 4
and 5 represent the deflection contour plots of the CCCC plate with exponential and
trigonometric loadings, respectively.

Figure 4: The deflection contour plots of the CCCC plate with exponential loading by (a) nonsingular and
(b) singular BPM formulations.

Figure 5: The deflection contour plots of the CCCC plate with trigonometric loading by (a) nonsingular and
(b) singular BPM formulations.
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3.2 Plates of different boundary shapes

Fig. 6 shows a parallelogram CCCC plate with skew angle θ. Table 4 displays the
maximum deflection of a uniformly loaded parallelogram CCCC plate by using the
BPM. It is observed that both the numerical solutions with nonsingular and singular
formulations agree well with the solution obtained by the reference method [22]. The
maximum deflections obtained by the BPM have accuracy of three to four significant
digits compared with the results obtained by the method presented in [22].

Figure 6: Parallelogram plate with skew angle θ.

We consider the clamped circular plate subjected to a uniform loading, with center
at (0, 0) and radius r=1. Here the number of testing points is 7845 to examine the
numerical accuracy. According to Table 5, the results obtained by the nonsingular
BPM have reasonable accuracy, while the results by the singular BPM reach extremely
high accuracy. In order to depict the error distribution, Fig. 7 presents the relative
error at line y=0. It is observed that maximum errors occur on the boundary as in the
other collocation methods.

Figure 7: Relative error distribution of circular plate at line y=0 used by (a) nonsingular and (b) singular
BPM formulations.

Table 4: The maximum deflection and its relative error of the CCCC parallelogram plate with different skew
angles (44 boundary nodes). θ is skew angle. NF: Nonsingular formulation. SF: singular formulation.

θ Coordinate W̄ [21] W (NF) W (SF)
0 0.5, 0.5 0.12653 0.12646 0.12650
15 0.634, 0.5 0.12011 0.12010 0.12002
30 0.7887, 0.5 0.09866 0.09860 0.09864
45 1.0, 0.5 0.05874 0.05871 0.05871

Note: The deflection W̄ is calculated by the method in [22].
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Table 5: The maximum deflection and its relative errors and average relative errors of circular plate subjected
to a uniform loading (30 boundary knots, fictitious boundary radius R=3).

Boundary [21] Nonsingular Formulation Singular Formulation
Condition W̄ W rerr Lerr W rerr Lerr
Clamped 1.5625 1.5625 0 1.50E-04 1.5625 0 2.61E-08

Note: The deflection W̄ is given by Timoshenko [21]. The parameters are R=2 and c=(NN + 4)/32.

4 Conclusions

This paper makes the first attempt to calculate Kirchhoff plate bending problems
by employing the RC-MRM based BPM. The convergence rate and stability of this
method are carefully examined. Based on the results and discussions in Section 3, the
following conclusions are drawn:

• The present BPM produces numerical solution of high accuracy with boundary-
only discretization. No any inner nodes are required for inhomogeneous problems of
different types. In addition, the results by using the nonsingular and singular BPM
have similar order of accuracy.

• Computational efficiency of the present BPM is examined. For most cases tested
in this study, only a few boundary particles can produce highly accurate solution.

•Convergence curves appear somewhat oscillatory because the conditioning num-
ber of the BPM interpolation matrix quickly increases with increasing boundary nodes.

• The Laplacian harmonic function requires determining a problem-dependent pa-
rameter c, which is a reminiscence of the shape parameter in well-known radial basis
function MQ.

• This paper has tested the BPM to the Kirchhoff plate bending problems subjected
to a few typical loadings. For the other types of loading function, we may find a suit-
able composite operator to reduce it to zero. If it is not workable, we can express it by
a sum of polynomial or trigonometric function series, and then the present BPM can
simply be implemented to solve these problems with the boundary-only discretiza-
tion.
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