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Abstract. The lid-driven square cavity flow is investigated by numerical experi-
ments. It is found that from Re= 5, 000 to Re=7, 307.75 the solution is stationary,
but at Re=7, 308 the solution is time periodic. So the critical Reynolds number for
the first Hopf bifurcation localizes between Re=7, 307.75 and Re=7, 308. Time pe-
riodical behavior begins smoothly, imperceptibly at the bottom left corner at a tiny
tertiary vortex; all other vortices stay still, and then it spreads to the three relevant
corners of the square cavity so that all small vortices at all levels move periodi-
cally. The primary vortex stays still. At Re=13, 393.5 the solution is time periodic;
the long-term integration carried out past t∞=126, 562.5 and the fluctuations of the
kinetic energy look periodic except slight defects. However at Re=13, 393.75 the
solution is not time periodic anymore: losing unambiguously, abruptly time peri-
odicity, it becomes chaotic. So the critical Reynolds number for the second Hopf
bifurcation localizes between Re=13, 393.5 and Re=13, 393.75. At high Reynolds
numbers Re=20, 000 until Re=30, 000 the solution becomes chaotic. The long-term
integration is carried out past the long time t∞=150, 000, expecting the time asymp-
totic regime of the flow has been reached. The distinctive feature of the flow is then
the appearance of drops: tiny portions of fluid produced by splitting of a secondary
vortex, becoming loose and then fading away or being absorbed by another sec-
ondary vortex promptly. At Re=30, 000 another phenomenon arises—the abrupt
appearance at the bottom left corner of a tiny secondary vortex, not produced by
splitting of a secondary vortex.

AMS subject classifications: 76D05, 76F06
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1 Introduction

The lid-driven square cavity flow has been investigated numerically. At low Reynolds
numbers such as Re=100, 1000, 3, 200, and 5, 000, the solution is stationary; at mid
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Reynolds numbers such as Re=7, 500, 10, 000, and 12, 500, the solution is time peri-
odic; at high Reynolds numbers such as Re=15, 000, 17, 500, and 20, 000, the solution
becomes chaotic. As the Reynolds number increases, three kind of solutions appear:
stationary, time periodic, and chaotic. The results reported in [21] reveal that two Hopf
bifurcations occur and that the critical Reynolds number for the first Hopf bifurcation
localizes between Re=5, 000 and Re=7, 500 and the critical Reynolds number for the
second Hopf bifurcation localizes between Re=12, 500 and Re=15, 000.

But yet, with precision, when and how changes the flow from stationary to time
periodic and then from time periodic to chaotic?

This question which has not been addressed in [21] concerns in the first place
this research, deserving much more attention because this is another source of dis-
agreement when solving the lid-driven square cavity flow problem: in [25] the criti-
cal Reynolds number for the first Hopf bifurcation localizes between Re=7, 500 and
10, 000; in [14], approximate to Re=8, 000; in [1], between Re=8, 017.6 and 8, 018.8;
in [4, 29, 31], approximate to Re=7, 402, Re=8, 031.93, Re=8, 000, respectively.

The present research determines two Hopf bifurcations with precision: within an
interval of length 0.25 for the Reynolds number.

Indeed, from Re=5, 000 to Re=7, 307.75 the solution is stationary. But at Re=7, 308
the solution is time periodic, not stationary. So the critical Reynolds number for the
first Hopf bifurcation localizes between Re=7, 307.75 and Re=7, 308. Time periodical
behavior begins smoothly, imperceptibly at the bottom left corner: at a tiny tertiary
vortex—all other vortices stay still, and then it spreads to the three relevant corners
of the square cavity—all small vortices at all levels move periodically. The primary
vortex stays still. On the same hand, at Re=13, 393.5 the solution is time periodic; the
long-term integration carried out past t∞=126, 562.5, the fluctuations of the kinetic
energy look periodic—except slight defects. But at Re=13, 393.75 the solution is not
time periodic anymore: losing unambiguously, abruptly time periodicity, it becomes
chaotic. So the critical Reynolds number for the second Hopf bifurcation localizes
between Re=13, 393.5 and Re=13, 393.75.

Yet, at high Reynolds numbers, for chaotic solutions, another question arises:
when will they reach the time asymptotic regime of the flow, the global attractor [41, p.
104]—and how it looks like? In other words, once the numerical experiment runs for
a sufficiently long time to make sure the time asymptotic regime of the flow has been
reached, what are the distinctive features of the flow?

This interesting question partially addressed in [21] is the second concern of this
research. In [21], it was partially addressed because the larger high Reynolds num-
ber considered was Re=20, 000 and the long-term integration was carried out past the
long time t∞=25, 000; whereas this research adds up three more high Reynolds num-
bers: Re=22, 500, 25, 000, 30, 000, and the long-term integration is carried out past the
long time t∞À25, 000.

Indeed, at high Reynolds numbers Re=20, 000 until Re=30, 000 the solution be-
comes chaotic. The long-term integration is carried out past the long time t∞=150, 000,
expecting the time asymptotic regime of the flow has been reached. The distinctive
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feature of the flow is then the appearance of drops: tiny portions of fluid produced
by splitting of a secondary vortex, becoming loose and then fading away or being ab-
sorbed by another secondary vortex, promptly. At Re=30, 000 another phenomenon
arises—the abrupt appearance at the bottom left corner of a tiny secondary vortex, not
produced by splitting of a secondary vortex.

Finally, one more question remains: what is the effect of the spatial mesh size
refining on the computed solution?

This determinative question also partially addressed in [21] concerns in the
third place of this research, partially addressed because the long-term integration
was performed with h=1/128, 1/256 for stationary solutions and with h=1/256 for
time periodic and chaotic solutions—h is the spatial mesh size; whereas to per-
form the long-term integration this research adds up two further refined mesh sizes
h=1/512, 1/1024 when computing stationary solutions and one more further refined
mesh size h=1/512 when computing time periodic solutions.

For stationary solutions, while not being reached yet, mesh convergence of nu-
merical solutions seems to take place. It should appear for h equal to or smaller
than h=1/2048, however. For time periodic solutions, a numerical experiment at a
Reynolds number with h=1/256 seems to predict the one at a greater Reynolds num-
ber with h=1/512, making the former helpful for studying the time asymptotic regime
of the flow.

The domain is the unit square cavity, and the viscous incompressible flow is gov-
erned by the two-dimensional time-dependent incompressible Navier-Stokes equa-
tions (NSE) [42] and driven by the upper wall, see Fig. 1. The nondimensional-
ized NSE in primitive variables with Dirichlet boundary conditions over the domain
Ω= [0, 1]× [0, 1] read





∂u
∂t
− 1

Re
∆u + (u · ∇)u +∇p = f, in Ω, t > 0,

∇ · u = 0, in Ω,
u = ϕ, on Γ = ∂Ω,
u(x, 0) = u0(x), in Ω,

(1.1)

where u is the velocity; p, the pressure; Re, the Reynolds number; f, the external force.
Here, f=0 and the boundary conditions read

{
u(x, ·) = (1, 0), if x ∈ upper wall,
u(x, ·) = 0, if x ∈ left, bottom, or right wall.

(1.2)

An unexpected balance of viscous and pressure forces makes the fluid to turn into
the square cavity. The properties of these forces depending upon the Reynolds num-
ber, a hierarchy of vortices develops—the large clockwise-rotating primary vortex (1),
whose location occurs toward the geometric center of the square cavity, and several
small vortices: the counterclockwise-rotating secondary vortices (2), the clockwise-
rotating tertiary vortices (3), the counterclockwise-rotating quaternary vortices (4), the
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Figure 1: Flow past a square cavity.

clockwise-rotating quinary vortices (5), whose locations occur at the three relevant cor-
ners of the square cavity: bottom right (BR), bottom left (BL), and top left (TL), and
appear hierarchically at the inclined ellipses as in Fig. 1.

Specifically, at the three relevant corners of the square cavity and at each level,
secondary, tertiary, quaternary, and quinary one or two small vortices develop. If
there is only one small vortex, this is named after the corresponding corner and the
corresponding level, subscript; e.g., the bottom right tertiary vortex is named BR3. If
there are two small vortices, one occurs on the up side of the inclined ellipse; the other,
on the down side. The corresponding prefix is added to the left of its name; e.g., the
two bottom right secondary vortices are named upBR2 and downBR2.

A combination of known methods is used to discretize and solve the NSE: the
linear Linθ∗-scheme [35] (a variant of the nonlinear θ-scheme [24]), the projection
method [32], the Conjugate Gradient method [12], the Bi-CGSTAB method [43], the
Fast Fourier Transform method [38, 39]—and the incremental unknowns method [5–
11,15–22,25,30,36,37,40,45] as a spatial preconditioner. The linear Linθ∗-scheme is used
for the temporal discretization—∆t is the time step—and a staggered marker-and-cell
(MAC) mesh with finite-differences [26] is used for the spatial discretization—h is the
spatial mesh size; see [21] for the theoretical as well as the graphics-presentation de-
tails.

This article is organized as follows. Section 2 displays the numerical experiments,
ranging from Re=5, 000 to Re=30, 000; and Section 3 presents the conclusion.
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2 Numerical experiments

Let us see what the numerical experiments reveal.

2.1 Stationary solutions

The case Re=5, 000. The solution is stationary.
What is the effect of the spatial mesh size refining on the computed solution?

Several spatial mesh sizes further and further refined are considered: h=1/128,
1/256, 1/512, 1/1024. And in each case the long-term integration is performed with
the time step ∆t=4h. Fig. 2 displays the complete phase diagram at the point
x=(7/8, 1/8): The 0 gray (black) line means the long-term integration is performed
with the spatial mesh size h=1/1024, displayed first; the 0.25 gray line, h=1/512, sec-
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Figure 2: Re=5, 000. The phase diagram at the point x=(7/8, 1/8). Spatial mesh size refining.
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Figure 3: Re=5, 000. The phase diagram at the point x=(7/8, 1/8). Spatial mesh size refining. Detail.

ond; the 0.5 gray line, h=1/256, third; the 0.75 gray line, h=1/128, last. As the spatial
mesh size is refined, the long-term behavior of the flow looks more and more similar to
the previous one, and the distance between the end points of their plots significantly
decreases, but the superposition of their plots is not reached yet: Fig. 3 displays the de-
tails. The distances are d1=0.0072, d2=0.0024, d3=6.4790× 10−4, d4=0.0103. While not
being reached yet, mesh convergence of numerical solutions seems to take place—It
should appear for h equal to or smaller than h=1/2048, however.

2.2 The first Hopf bifurcation

At Re=7, 307.75, the solution is stationary. But at Re=7, 308 the solution is time pe-
riodic, not stationary. So the critical Reynolds number for the first Hopf bifurcation
localizes between Re=7, 307.75 and Re=7, 308.
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From the low Reynolds number Re=7, 308 until the high Reynolds number
Re=20, 000—the primary vortex stays still.

2.3 Time periodic solutions

The case Re=7, 308. The long-term integration is performed with h=1/256, ∆t=h.
The solution is time periodic, not stationary. Fig. 4 displays this time periodic

solution. For the most part, the solution’s characteristics are as the ones of the case
before Re=5, 000 [21, p. 916]. But a distinctive feature adds up. Time periodical
behavior begins smoothly, imperceptibly at the bottom left corner: at the tiny terciary
vortex BL3, which never dissapears; it is not noticeable elsewhere—all other small
vortices stay still.

From now until otherwise stated, the long-term integration is performed with
h=1/256, ∆t=4h.

The case Re=11, 000. The solution is time periodic.
Fig. 5 displays this time periodic solution. For the most part, the solution’s behav-

ior is as the one at the case before Re=10, 000 [21, p. 922]. Yet, at the bottom right
corner there is a secondary-secondary-quaternary vortex merging and splitting—and
this is not sharp, cf. [21, page 923].

The case Re=13, 393.5. The solution is still time periodic.
The long-term integration is carried out past t∞=126, 562.5. The fluctuations of

the kinetic energy look periodic, except slight defects; Fig. 7 display the kinetic energy
from t=126, 484.390625 to t∞=126, 562.5. This long time reached, this time periodic
behavior—except slight defects—do not seem to change abruptly, repeating on and
on without noticeable changes.

The solution looks time periodic; Fig. 6 displays it, concentrating solely on the
merging at the bottom right corner.

For the most part, the solution’s behavior is as the one at the case before Re=12, 500
[21, p. 923]—but at the bottom right corner.

At the bottom right corner, two secondary vortices downBR2 and upBR2 keep merg-
ing and splitting as time goes on. The merging and splitting are sharp. Immedi-
ately after the splitting, the tertiary vortex BR3 becomes weak, and the primary vortex
drags the secondary vortex upBR2 downwards, to merge with the secondary vortex
downBR2—yet the merging is delayed. When the two secondary vortices downBR2
and upBR2 are going to merge, the quaternary vortex BR4 arises and begins growing,
spreading vertically upwards along the right wall, not merging with the secondary
vortex upBR2, and consequently not detaching the tertiary vortex BR3 from the right
wall. Afterwards, the quaternary vortex BR4 spreads horizontally leftwards along
the bottom wall. At this time, the tertiary vortex downBR3 and the quaternary vortex
upBR4 form out. And then, the quaternary vortex downBR4 and the tertiary vortex
upBR3 form out. The quaternary vortices downBR4 and upBR4 do not split; the quater-
nary vortex downBR4 becomes sharp. Firstly, the interaction of the secondary vortex
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Figure 4: Re=7, 308. h=1/256. ∆t=h. Time periodic solution.
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Figure 5: Re=11, 000. h=1/256. ∆t=4h. Time periodic solution.
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Figure 6: Re=13, 393.5. h=1/256. ∆t=4h. Time periodic solution.
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Figure 7: Re=13, 393.5. h=1/256. ∆t=4h. Kinetic energy.

upBR2 and the quaternary vortex downBR4 splits the tertiary vortex BR3, giving rise
to the tertiary vortices downBR3 and upBR3. Simultaneously, the secondary vortex
upBR2 and the quaternary vortex downBR4 merge. Secondly, the secondary vortices
upBR2 and downBR2 merge. Absorbing the secondary vortex downBR2, destroying
the tertiary vortex downBR3, and dragged further downwards by the primary vortex,
the secondary vortex upBR2 becomes the secondary vortex BR2. As the tertiary vor-
tex downBR3 vanishes, the quinary vortex BR5 arises fleetingly. The tertiary vortex
upBR3 detached from the bottom wall but always clinging to the right wall becomes
the tertiary vortex BR3, the secondary vortex BR2 dragging it upwards. And then, the
quaternary vortex upBR4 drags the tertiary vortex BR3 downwards, making it to cling
to the bottom wall. The tertiary vortex BR3 splits the secondary vortex BR2 and the
quaternary vortex upBR4, giving rise to the quaternary vortex BR4. The tertiary vor-
tex BR3 and the quinary vortex BR5 merge. And the quaternary vortex BR4 detached
from both the right wall and the bottom wall vanishes promptly. This is the secondary-
quaternary-secondary vortex merging at the bottom right corner which followed by
the splitting of the two secondary vortices downBR2 and upBR2 repeat, periodically,
constituting the secondary-quaternary-secondary vortex merging and splitting at the
bottom right corner.

2.4 The second Hopf bifurcation

At Re=13, 393.5, the solution is time periodic. But at Re=13, 393.75 the solution is not
time periodic anymore: losing unambiguously, abruptly time periodicity, it becomes
chaotic. So the critical Reynolds number for the second Hopf bifurcation localizes
between Re=13, 393.5 and Re=13, 393.75.
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2.5 Chaotic solutions

The case Re=13, 393.75. The solution becomes chaotic.
The long-term integration is carried out past t∞=54, 687.5. In the first place,

the fluctuations of the kinetic energy look periodic—except slight defects; Fig. 8,
top, display the kinetic energy from t=42, 187.5 to t=42, 265.609375. In the second
place, the fluctuations of the kinetic energy change unambiguously, abruptly from
periodic—except slight defects—to chaotic; Fig. 8, middle, display the kinetic energy
from t=48, 593.75 to t=50, 624.953125. In the third place, the fluctuations of the ki-
netic energy definitely became chaotic; Fig. 8, bottom, display the kinetic energy from
t=54, 609.390625 to t∞ = 54, 687.5.

Let us see why at Re=13, 393.75 the solution becomes chaotic. And let us con-
centrate on the merging of secondary vortices, so let us consider the two secondary

Figure 8: Re=13, 393.75. h=1/256. ∆t=4h. Kinetic energy.
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Figure 9: Re=13, 393.75. h=1/256. ∆t=4h. Chaotic solution. First occurrence.
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Figure 10: Re=13, 393.75. h=1/256. ∆t=4h. Chaotic solution. Second occurrence.
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Figure 11: Re=20, 000. h=1/256. ∆t=4h. Chaotic solution. A particular occurrence.
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vortices at the three relevant corners of the square cavity solely when they are going
to merge—at two different occurrences.

Fig. 9 displays a first occurrence. At the bottom right corner, there is a distinct
secondary-quaternary-secondary vortex merging. At the bottom left corner, there is
a secondary-secondary vortex merging, but the merging do not occur: the secondary
vortex upBL2 disappears long before any merging with the secondary vortex downBL2
can occur. At the top left corner, there is a secondary-secondary vortex merging.

Fig. 10 displays a second occurrence. At the bottom right corner, there is a distinct
secondary-secondary-quaternary vortex merging. At the bottom left corner and at the
top left corner, there is a secondary-secondary vortex merging.

Definitely, at Re=13, 393.75 the solution is not time periodic anymore: losing un-
ambiguously, abruptly time periodicity, it becomes chaotic. At the three relevant cor-
ners of the square cavity, the mergings, and the splittings if there are, repeat on and on,
but not exactly the same as they do for time periodic solutions. The solution becomes
chaotic because it loses time periodicity in these manners:

• The kind of merging may not be the same. At the bottom right corner, a merging
follows a splitting which follows a merging and so on, but one merging may
be a secondary-secondary-quaternary vortex merging, and another may be a
secondary-quaternary-secondary vortex merging. At the bottom left corner, a
merging follows a merging which follows a merging and so on, but sometimes
the merging occurs and at other times do not.

• The size of the small vortices varies from occurrence to occurrence, not repeating
exactly the same.

For the next high Reynolds numbers, the solution becomes chaotic, indeed. And
the long-term integration is carried out past the long time t∞=150, 000, expecting the
time asymtotic regime of the flow has been reached. Let us focus our attention on
some phenomena appearing after this long time has been reached.

The case Re=20, 000. The solution becomes chaotic.
Fig. 11 displays a particular occurrence. The distinctive feature is a drop. At the

bottom right corner. Starting on entry (1, 3) and ending on entry (3, 1), the interaction
of the primary vortex and the strong tertiary vortex upBR3 pinches off a drop from
the secondary vortex upBR2, a drop which is dragged downwards by the primary
vortex to merge with the secondary vortex downBR2 but which vanishes just before
the merging can occur.

From now on, the primary vortex do not stay still anymore.

The case Re=22, 500. The solution becomes chaotic.
Fig. 12 displays a particular occurrence. The distinctive feature is a drop. At the

bottom left corner. Starting on entry (2, 1) and ending on entry (4, 3), the shape of
the secondary vortex downBL2 contributing, the strong action of the primary vortex
detaches a drop from the secondary vortex downBL2. The primary vortex drags the
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Figure 12: Re=22, 500. h=1/256. ∆t=4h. Chaotic solution. A particular occurrence.
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Figure 13: Re=25, 000. h=1/256. ∆t=4h. Chaotic solution. A particular occurrence.
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Figure 14: Re=30, 000. h=1/256. ∆t=3h. Chaotic solution. A particular occurrence.
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drop upwards, the drop progresively vanishing. And then, the strong secondary vor-
tex BL2 begins absorbing the drop, the drop progresively strenghthening. Finally, the
secondary vortex BL2 absorbs the drop completely.

The case Re=25, 000. The solution becomes chaotic.
Fig. 13 displays a particular occurrence. The distinctive feature is a drop. At the

top left corner. Two secondary vortices left upTL2 and right upTL2 form within the
secondary vortex upTL2. The sole interaction of the primary vortex with itself splits the
secondary vortices left upTL2 and right upTL2, producing a drop, the secondary vortex
right upTL2, which is dragged horizontally rightwards, progresively vanishing. This
drop vanishes completely before reaching the horizontal center of the square cavity.
The secondary vortex left upTL2 stands as the secondary vortex upTL2.

Next, the long-term integration is performed with h=1/256, ∆t=3h.

The case Re=30, 000. The solution becomes chaotic.
Fig. 14 displays a particular occurrence. The distinctive feature is the abrupt ap-

pearance of a secondary vortex. At the bottom left corner. The secondary vortex
downBL2 arises and begins growing, and right to the left, another secondary vortex
left downBL2 arises and begins growing faster. And then, abruptly, just above the
secondary vortex left downBL2 arises another secondary vortex above left downBL2.
The secondary vortex left downBL2 catches and absorbs the secondary vortex
above left downBL2, becoming the new secondary vortex left downBL2. Afterwards,
the secondary vortices downBL2 and left downBR2 merge, becoming the new secondary
vortex downBL2.

2.6 The time-step coarsening and the spatial-mesh-size refining

To make sure the time asymtotic regime of the flow has been reached, the long-term in-
tegration should attain a long time, so the use of a coarse time step should be helpful—
but this introduces inherent numerical errors. Let us see how these modify the com-
puted solution.

2.6.1 The effect of the time-step coarsening

The long-term integration is performed with h=1/256, ∆t=4h which is compared with
h=1/256, ∆t=h.

The case Re=7, 307.75. The solution is time periodic, not stationary.
Fig. 15 displays this time periodic solution. The solution’s behavior resembles for

the most part the one at Re=7, 318 with h=1/256, ∆t=h. Notwithstanding, the solu-
tion at Re=7, 307.75 with h=1/256, ∆t=h is stationary, not time periodic. In fact, this
is the last stationary solution just before the solutions turn out time periodic.

It appears that the inherent numerical errors due to the time-step coarsening add
to the Reynolds number: The solution computed with a coarse time step ∆t=4h at a
Reynolds number corresponds to the solution computed with a fine time step ∆t=h at
a greater Reynolds number, the spatial mesh size fixed.
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Figure 15: Re=7, 307.75. h=1/256. ∆t=4h. Time periodic solution.
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On the other hand, the use of a finer spatial mesh size should produce more ac-
curate solutions, but then their computation would be by far more expensive in CPU
time, a severe drawback if the issue is the long-term integration. Yet, how relate the
less precise computations performed with the coarse spatial mesh size h=1/256 to the
more precise ones performed with the fine spatial mesh size h=1/512, the time step
∆t=4h, for instance?

2.6.2 The effect of the spatial-mesh-size refining

The long-term integration is performed with h=1/512, ∆t=4h which is compared with
h=1/256, ∆t=4h.

The case Re=12, 500. The solution is time periodic.
Fig. 16 displays this time periodic solution. The solution’s behavior resembles the

one at Re=11, 000 with h=1/256, ∆t=4h.
But some pronounced differences arise.
At the bottom right corner. Two secondary vortices downBR2 and upBR2 keep

merging and splitting as time goes on. The merging and splitting are not sharp. The
secondary vortex upBR2 and the quaternary vortex BR4 arise almost simultaneously
when the two secondary vortices downBR2 and upBR2 are about to split. Immediate-
ley after the splitting, the tertiary vortex BR3 becomes weak, and the primary vortex
drags the secondary vortex upBR2 downwards, to merge with the secondary vortex
downBR2—and the merging is not delayed. Meanwhile, the tertiary vortex downBR3
and the quaternary vortex upBR4 form out. Afterwards, when the two secondary vor-
tices downBR2 and upBR2 are about to merge, the quaternary vortex BR4 spreads ver-
tically upwards along the right wall, not merging with the secondary vortex upBR2,
and horizontally leftward along the bottom wall, not merging with the secondary vor-
tex downBR2, and consequently not detaching the tertiary vortex BR3 neither from
the right wall nor from the bottom wall. Firstly, the secondary vortices upBR2 and
downBR2 merge, becoming the secondary vortex BR2. At this time, the quaternary vor-
tex downBR4 and the tertiary vortex upBR3 form out. The quaternary vortices downBR4
and upBR4 do not split; the quaternary vortex downBR4 becomes sharp. Secondly, the
interaction of the secondary vortex BR2 and the quaternary vortex downBR4 splits the
tertiary vortex BR3, giving rise to the tertiary vortices downBR3 and upBR3. Simultane-
ously, the secondary vortex BR2 and the quaternary vortex downBR4 merge. Destroy-
ing the tertiary vortex downBR3 and dragged further downwards by the primary vor-
tex, the secondary vortex BR2 becomes the secondary vortex BR2 with the secondary
vortex downBR2 within. The tertiary vortex upBR3 detached from the bottom wall but
always clinging to the right wall becomes the tertiary vortex BR3, the secondary vortex
BR2 dragging it upwards and making it to remain clung to the right wall. Just before
the splitting of the tertiary vortex BR3, the quinary vortex BR5 arises. And then, the
quaternary vortex upBR4 drags the tertiary vortex BR3 downwards, making it to cling
to the bottom wall. The tertiary vortex BR3 splits the secondary vortex BR2 and the
quaternary vortex upBR4, giving rise to the quaternary vortex BR4. Simultaneously,
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Figure 16: Re=12, 500. h=1/512. ∆t=4h. Time periodic solution.
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the tertiary vortex BR3 and the quinary vortex BR5 merge, detaching the quaternary
vortex BR4 from the right wall. The quaternary vortex BR4 remaining attached to the
bottom wall vanishes promptly . The secondary vortex BR2 with the secondary vortex
downBR2 within and the tertiary vortex BR3 stand. And then, almost simultaneously,
the secondary vortex upBR2 and the quaternary vortex BR4 arise. The tertiary vortex
BR3 becomes strong, and the interaction of the primary vortex and the tertiary vortex
BR3 splits the secondary vortices downBR2 and upBR2. This behavior repeats periodi-
cally. This is the secondary-secondary-quaternary vortex merging and splitting at the
bottom right corner.

But what are those pronounced differences? Here, the primary vortex is flat—and
the tertiary vortex upBR3 do not detach from the right wall.

To summarize, the solution’s behavior at a Reynolds number with h=1/512, ∆t
=4h seems to resemble the one at a lesser Reynolds number with h=1/256, ∆t=4h,
but with some pronounced differences in the primary vortex and in the not detaching
of the tertiary vortex upBR3 from the right wall. In other words, a numerical experi-
ment at a Reynolds number with h=1/256, ∆t=4h seems to predict the one at a greater
Reynolds number with h=1/512, ∆t=4h, making the former helpful for studying the
time asymptotic regime of the flow.

3 Conclusions

For the three concerns of this research, the conclusions are:

• From Re=5, 000 to Re=7, 307.75 the solution is stationary. But at Re=7, 308 the
solution is time periodic, not stationary. So the critical Reynolds number for the first
Hopf bifurcation localizes between Re=7, 307.75 and Re=7, 308. Time periodical be-
havior begins smoothly, imperceptibly at the bottom left corner: at a tiny tertiary
vortex—all other vortices stay still, and then it spreads to the three relevant corners
of the square cavity—all small vortices at all levels move periodically. The primary
vortex stays still. On the same hand, at Re=13, 393.5 the solution is time periodic; the
long-term integration carried out past t∞=126, 562.5, the fluctuations of the kinetic
energy look periodic—except slight defects. But at Re=13, 393.75 the solution is not
time periodic anymore: losing unambiguously, abruptly time periodicity, it becomes
chaotic. So the critical Reynolds number for the second Hopf bifurcation localizes
between Re=13, 393.5 and Re=13, 393.75.

• At high Reynolds numbers Re=20, 000 until Re=30, 000 the solution becomes
chaotic, indeed. The long-term integration is carried out past the long time t∞=
150, 000, expecting the time asymptotic regime of the flow has been reached. The
distinctive feature of the flow is then the appearance of drops: tiny portions of fluid
produced by splitting of a secondary vortex, becaming loose and then fading away or
being absorbed by another secondary vortex, promptly. At Re=30, 000 another phe-
nomenon arises—the abrupt appearance at the bottom left corner of a tiny secondary
vortex, not produced by splitting of a secondary vortex.
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• The numerical experiments above are performed with the spatial mesh size
h=1/256 and with the time step ∆t=h to determine the first Hopf bifurcation
or with the time step ∆t=4h to determine the second Hopf bifurcation. It ap-
pears that the inherent numerical errors due to the time-step coarsening add to the
Reynolds number. On the other hand, A numerical experiment at a Reynolds num-
ber with h=1/256, ∆t=4h seems to predict the one at a greater Reynolds number with
h=1/512, ∆t=4h, making the former helpful for studying the time asymptotic regime
of the flow. Spatial mesh size refining would produce mesh convergence of numerical
solutions for h equal to or smaller than h=1/2048, however.

We close this paper by pointing out that the lid-driven square cavity flow—an
almost fictitious flow [34]—has been solved many times by various techniques [2,3,13,
21,23,25,27,28,33,44], their results sometimes agreeing—at other times disagreeing [21,
p. 927].

Acknowledgments

The author thanks Professor Roger Temam for providing the supercomputing support
which allowed this research to be accomplished. This research was supported in part
by the National Science Foundation Grant No. DMS-0604235.

References

[1] F. AUTERI, N. PAROLINI AND L. QUARTAPELLE, Numerical investigation on the stability of
singular driven cavity flow, J. Comput. Phys., 183(1) (2002), pp. 1–25.

[2] E. BARRAGY AND G. F. CAREY, Stream function-vorticity driven cavity solution using p finite
elements, Comput. & Fluids, 26(5) (1997), pp. 453–468.

[3] C.-H. BRUNEAU AND C. JOURON, An efficient scheme for solving steady incompressible
Navier-Stokes equations, J. Comput. Phys., 89(2) (1990), pp. 389–413.

[4] C.-H. BRUNEAU AND M. SAAD, The 2D lid-driven cavity problem revisited, Comput. &
Fluids, 35(3) (2006), pp. 326–348.

[5] M. CHEN, A. MIRANVILLE AND R. TEMAM, Incremental unknowns in finite differences in
three space dimensions Comput. Appl. Math., 14(3) (1995), pp. 219–252.

[6] M. CHEN AND R. TEMAM, The incremental unknown method I , Appl. Math. Lett., 4(3)
(1991), pp. 73–76.

[7] M. CHEN AND R. TEMAM, The incremental unknown method II, Appl. Math. Lett., 4(3)
(1991), pp. 77–80.

[8] M. CHEN AND R. TEMAM, Incremental unknowns for solving partial differential equations,
Numer. Math., 59(3) (1991), pp. 255–271.

[9] M. CHEN AND R. TEMAM, Incremental unknowns for convection-diffusion equations, Appl.
Numer. Math., 11(5) (1993), pp. 365–383.

[10] M. CHEN AND R. TEMAM, Incremental unknowns in finite differences: Condition number of
the matrix, SIAM J. Matrix Anal. Appl., 14(2) (1993), pp. 432–455.

[11] M. CHEN AND R. TEMAM, Nonlinear Galerkin method in the finite difference case and wavelet-
like incremental unknowns, Numer. Math., 64(3) (1993), pp. 271–294.



S. Garcia / Adv. Appl. Math. Mech., 4 (2009), pp. 546-572 571

[12] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalized conjugate gradient method for
the numerical solution of elliptic partial differential equations, Sparse Matrix Computations,
Academic Press, 1976. J. R. Bunch and D. J. Rose (Eds.).
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